
Package: Greg (via r-universe)
August 27, 2024

Version 2.0.2

Title Regression Helper Functions

Maintainer Max Gordon <max@gforge.se>

Description Methods for manipulating regression models and for
describing these in a style adapted for medical journals.
Contains functions for generating an HTML table with crude and
adjusted estimates, plotting hazard ratio, plotting model
estimates and confidence intervals using forest plots,
extending this to comparing multiple models in a single forest
plots. In addition to the descriptive methods, there are
functions for the robust covariance matrix provided by the
'sandwich' package, a function for adding non-linearities to a
model, and a wrapper around the 'Epi' package's Lexis()
functions for time-splitting a dataset when modeling
non-proportional hazards in Cox regressions.

License GPL (>= 3)

URL http://gforge.se

BugReports https://github.com/gforge/Greg/issues

Biarch yes

Encoding UTF-8

Imports broom, Epi, dplyr, glue, graphics, grDevices, htmlTable (>=
2.0.0), Hmisc, knitr, methods, nlme, purrr, rlang, rms,
sandwich, stats, stringr, tibble, tidyr, tidyselect, utils

Depends Gmisc (>= 1.0.3), forestplot, R (>= 4.1.0)

Suggests boot, testthat, cmprsk, survival, ggplot2, parallel,
rmarkdown, rmeta, tidyverse

VignetteBuilder knitr

RoxygenNote 7.2.2

Repository https://gforge.r-universe.dev

RemoteUrl https://github.com/gforge/greg

RemoteRef HEAD

RemoteSha f21fdab58340738d9ba97fb74490abfe0edfaaff

1

http://gforge.se
https://github.com/gforge/Greg/issues

2 Greg-package

Contents
Greg-package . 2
addNonlinearity . 3
caDescribeOpts . 5
confint.ols . 6
confint_robust . 7
forestplotCombineRegrObj . 8
forestplotRegrObj . 10
isFitCoxPH . 14
plotHR . 17
robcov_alt . 21
tidy.rms . 22
timeSplitter . 24

Index 26

Greg-package Regression Helper Functions

Description

This R-package provides functions that primarily aimed at helping you work with regression mod-
els. While much of the data presented by the standard regression output is useful and important -
there is often a need for further simplification prior to publication. The methods implemented in this
package are inspired by some of the top journals such as NEJM, BMJ, and other medical journals
as this is my research field.

Output functions

The package has function that automatically prints the crude unadjusted estimates of a function next
to the adjusted estimates, a common practice for medical publications.

The forestplot wrappers allows for easily displaying regression estimates, often convenient for mod-
els with a large number of variables. There is also functionality that can help you comparing differ-
ent models, e.g. subsets of patients or compare different regression types.

Time-splitter

When working with Cox regressions the proportional hazards can sometimes be violated. As the
tt() approach doesn’t lend itself that well to big datasets I often rely on time-splitting the dataset
and then using the start time as an interaction term. See the function timeSplitter() and the
associated vignette("timeSplitter").

Other regression functions

In addition to these funciton the package has some extentions to linear regression where it extends
the functionality by allowing for robust covariance matrices. by integrating the ’sandwich’-package
for rms::ols().

addNonlinearity 3

Important notice

This package has an extensive test-set for ensuring that everything behaves as expected. Despite
this I strongly urge you to check that the values make sense. I commonly use the regression methods
available in the ’rms’-package and in the ’stats’-package. In addition I use the coxph() in many
of my analyses and should also be safe. Please send me a notice if you are using the package with
some other regression models, especially if you have some tests verifying the functionality.

Author(s)

Max Gordon

addNonlinearity Add a nonlinear function to the model

Description

This function takes a model and adds a non-linear function if the likelihood-ratio supports this (via
the anova(..., test = "chisq") test for stats while for rms you need to use the rcs() spline that
is automatically evaluated for non-linearity).

Usage

addNonlinearity(
model,
variable,
spline_fn,
flex_param = 2:7,
min_fn = AIC,
sig_level = 0.05,
verbal = FALSE,
workers,
...

)

S3 method for class 'negbin'
addNonlinearity(model, ...)

Arguments

model The model that is to be evaluated and adapted for non-linearity

variable The name of the parameter that is to be tested for non-linearity. Note that the
variable should be included plain (i.e. as a linear variable) form in the model.

spline_fn Either a string or a function that is to be used for testing alternative non-linearity
models

flex_param A vector with values that are to be tested as the default second parameter for
the non-linearity function that you want to evaluate. This defaults to 2:7, for the
ns() it tests the degrees of freedom ranging between 2 and 7.

4 addNonlinearity

min_fn This is the function that we want to minimized if the variable supports the non-
linearity assumption. E.g. BIC() or AIC, note that the BIC() will in the majority
of cases support a lower complexity than the AIC().

sig_level The significance level for which the non-linearity is deemed as significant, de-
faults to 0.05.

verbal Set this to TRUE if you want print statements with the anova test and the chosen
knots.

workers The function tries to run everything in parallel. Under some circumstances
you may want to restrict the number of parallel threads to less than the default
detectCores() - 1, e.g. you may run out of memory then you can provide this
parameter. If you do not want to use parallel then simply set workers to FALSE.
The cluster created using makeCluster() function.

... Passed onto internal prNlChooseDf() function.

Examples

library(Greg)
data("melanoma", package = "boot", envir = environment())

library(dplyr)
melanoma <- mutate(melanoma,

status = factor(status,
levels = 1:3,
labels = c("Died from melanoma",

"Alive",
"Died from other causes")),

ulcer = factor(ulcer,
levels = 0:1,
labels = c("Absent", "Present")),

time = time/365.25, # All variables should be in the same time unit
sex = factor(sex,

levels = 0:1,
labels = c("Female", "Male")))

library(survival)
model <- coxph(Surv(time, status == "Died from melanoma") ~ sex + age,

data = melanoma
)

nl_model <- addNonlinearity(model, "age",
spline_fn = "pspline",
verbal = TRUE,
workers = FALSE

)
Note that there is no support for nonlinearity in this case

caDescribeOpts 5

caDescribeOpts A function for gathering all the description options

Description

Since there are so many different description options for the printCrudeAndAdjustedModel()
function they have been gathered into a list. This function is simply a helper in order to generate a
valid list.

Usage

caDescribeOpts(
show_tot_perc = FALSE,
numb_first = TRUE,
continuous_fn = describeMean,
prop_fn = describeFactors,
factor_fn = describeFactors,
digits = 1,
colnames = c("Total", "Event")

)

Arguments

show_tot_perc Show percentages for the total column

numb_first Whether to show the number before the percentages

continuous_fn Stat function used for the descriptive statistics, defaults to describeMean()

prop_fn Stat function used for the descriptive statistics, defaults to describeFactors()
since there has to be a reference in the current setup.

factor_fn Stat function used for the descriptive statistics, defaults to describeFactors()

digits Number of digits to use in the descriptive columns. Defaults to the general digits
if not specified.

colnames The names of the two descriptive columns. By default Total and Event.

Value

list Returns a list with all the options

6 confint.ols

confint.ols A confint function for the ols

Description

This function checks that there is a df.residual before running the qt(). If not found it then
defaults to the qnorm() function. Otherwise it is a copy of the confint() function.

Usage

S3 method for class 'ols'
confint(object, parm, level = 0.95, ...)

Arguments

object a fitted ols-model object.

parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level the confidence level required.

... additional argument(s) for methods.

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each parameter.
These will be labelled as (1-level)/2 and 1 - (1-level)/2 in

Examples

Generate some data
n <- 500
x1 <- runif(n) * 2
x2 <- runif(n)
y <- x1^3 + x2 + rnorm(n)

library(rms)
library(sandwich)
dd <- datadist(x1, x2, y)
org.op <- options(datadist = "dd")

Main function
f <- ols(y ~ rcs(x1, 3) + x2)

Check the bread
bread(f)
Check the HC-matrix
vcovHC(f, type = "HC4m")
Adjust the model so that it uses the HC4m variance

confint_robust 7

f_rob <- robcov_alt(f, type = "HC4m")
Get the new HC4m-matrix
- this function just returns the f_rob$var matrix
vcov(f_rob)
Now check the confidence interval for the function
confint(f_rob)

options(org.op)

confint_robust The confint function adapted for vcovHC

Description

The confint.lm uses the t-distribution as the default confidence interval estimator. When there is
reason to believe that the normal distribution is violated an alternative approach using the vcovHC()
may be more suitable.

Usage

confint_robust(
object,
parm,
level = 0.95,
HC_type = "HC3",
t_distribution = FALSE,
...

)

Arguments

object The regression model object, either an ols or lm object

parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level the confidence level required.

HC_type See options for vcovHC()

t_distribution A boolean for if the t-distribution should be used or not. Defaults to FALSE.
According to Cribari-Nieto and Lima’s study from 2009 this should not be the
case.

... Additional parameters that are passed on to vcovHC()

Value

matrix A matrix (or vector) with columns giving lower and upper confidence limits for each pa-
rameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2 in

8 forestplotCombineRegrObj

References

F. Cribari-Neto and M. da G. A. Lima, "Heteroskedasticity-consistent interval estimators", Jour-
nal of Statistical Computation and Simulation, vol. 79, no. 6, pp. 787-803, 2009 (doi:10.1080/
00949650801935327)

Examples

n <- 50
x <- runif(n)
y <- x + rnorm(n)

fit <- lm(y~x)
library("sandwich")
confint_robust(fit, HC_type = "HC4m")

forestplotCombineRegrObj

Compares different scores in different regression objects.

Description

Creates a composite from different regression objects into one forestplot where you can choose the
variables of interest to get an overview and easier comparison.

Usage

forestplotCombineRegrObj(
regr.obj,
variablesOfInterest.regexp = NULL,
estimate.txt = NULL,
add_first_as_ref = FALSE,
ref_txt = "ref.",
digits = 1,
post_process_data = function(x) x,
is.summary = NULL,
xlab = NULL,
zero = NULL,
xlog = NULL,
exp = xlog,
...

)

Arguments

regr.obj A list with all the fits that have variables that are to be identified through the
regular expression

https://doi.org/10.1080/00949650801935327
https://doi.org/10.1080/00949650801935327

forestplotCombineRegrObj 9

variablesOfInterest.regexp

A regular expression identifying the variables that are of interest of compar-
ing. For instance it can be "(score|index|measure)" that finds scores in different
models that should be compared.

estimate.txt The text of the estimate, usually HR for hazard ratio, OR for odds ratio
add_first_as_ref

If you want that the first variable should be reference for that group of vari-
ables. The ref is a variable with the estimate 1 or 0 depending if exp() and the
confidence interval 0.

ref_txt Text instead of estimate number

digits Number of digits to use for the estimate output
post_process_data

A function that takes the data frame just prior to calling ‘forestplot‘ and allows
you to manipulate it. Primarily used for changing the ‘column_label‘ that has
the names shown in the final plot.

is.summary A vector indicating by TRUE/FALSE if the value is a summary value which means
that it will have a different font-style

xlab x-axis label

zero Indicates what is zero effect. For survival/logistic fits the zero is 1 while in most
other cases it’s 0.

xlog If TRUE, x-axis tick marks are to follow a logarithmic scale, e.g. for logistic
regression (OR), survival estimates (HR), Poisson regression etc. Note: This is
an intentional break with the original forestplot function as I’ve found that
exponentiated ticks/clips/zero effect are more difficult to for non-statisticians
and there are sometimes issues with rounding the tick marks properly.

exp Report in exponential form. Default true since the function was built for use
with survival models.

... Passed to forestplot()

See Also

Other forestplot wrappers: forestplotRegrObj()

Examples

org.par <- par("ask" = TRUE)

simulated data to test
library(tidyverse)
set.seed(10)
cov <- tibble(ftime = rexp(200),

fstatus = sample(0:1, 200, replace = TRUE),
x1 = runif(200),
x2 = runif(200),
x3 = runif(200)) |>

Add some column labels
Gmisc::set_column_labels(x1 = "First variable",

10 forestplotRegrObj

x2 = "Second variable")

library(rms)
ddist <- datadist(cov)
options(datadist = "ddist")

fit1 <- cph(Surv(ftime, fstatus) ~ x1 + x2, data = cov)
fit2 <- cph(Surv(ftime, fstatus) ~ x1 + x3, data = cov)

list(`First model` = fit1,
`Second model` = fit2) |>

forestplotCombineRegrObj(variablesOfInterest.regexp = "(x2|x3)") |>
fp_set_style(lines = "steelblue",

box = "darkblue")

How to add expressions to the plot label
list(fit1, fit2) |>

forestplotCombineRegrObj(variablesOfInterest.regexp = "(x2|x3)",
reference.names = c("First model", "Second model"),
post_process_data = \(data) {

data$column_label[4] <- c(rlang::expr(expression(Fever >= 38.5)))
return(data)

})

par(org.par)

forestplotRegrObj Forest plot for multiple models

Description

Plot different model fits with similar variables in order to compare the model’s estimates and confi-
dence intervals. Each model is represented by a separate line on top of eachother and are therefore
ideal for comparing different models. This extra appealing when you have lots of variables included
in the models.

Usage

forestplotRegrObj(
regr.obj,
postprocess_estimates.fn = function(x) x,
rowname = "Variable",
ci.txt = "CI",
ci.glue = "{lower} to {higher}",
digits = 1,
get_box_size = fpBoxSize,
...

)

forestplotRegrObj 11

Default S3 method:
forestplotRegrObj(
regr.obj,
postprocess_estimates.fn = function(x) x,
rowname = "Variable",
ci.txt = "CI",
ci.glue = "{lower} to {higher}",
digits = 1,
get_box_size = fpBoxSize,
...

)

S3 method for class 'coxph'
forestplotRegrObj(
regr.obj,
postprocess_estimates.fn = function(x) x,
rowname = "Variable",
ci.txt = "CI",
ci.glue = "{lower} to {higher}",
digits = 1,
get_box_size = fpBoxSize,
xlab = "Hazard Ratio",
estimate.txt = "HR",
xlog = TRUE,
zero = 1,
exp = TRUE,
...

)

S3 method for class 'lrm'
forestplotRegrObj(
regr.obj,
postprocess_estimates.fn = function(x) x,
rowname = "Variable",
ci.txt = "CI",
ci.glue = "{lower} to {higher}",
digits = 1,
get_box_size = fpBoxSize,
xlab = "Odds ratio",
estimate.txt = "HR",
xlog = TRUE,
zero = 1,
exp = TRUE,
...

)

S3 method for class 'lm'
forestplotRegrObj(

12 forestplotRegrObj

regr.obj,
postprocess_estimates.fn = function(x) x,
rowname = "Variable",
ci.txt = "CI",
ci.glue = "{lower} to {higher}",
digits = 1,
get_box_size = fpBoxSize,
xlab = "Effect",
estimate.txt = "Coef",
xlog = FALSE,
zero = 0,
exp = FALSE,
...

)

S3 method for class 'glm'
forestplotRegrObj(
regr.obj,
postprocess_estimates.fn = function(x) x,
rowname = "Variable",
ci.txt = "CI",
ci.glue = "{lower} to {higher}",
digits = 1,
get_box_size = fpBoxSize,
xlab = NULL,
xlog = NULL,
zero = NULL,
estimate.txt = NULL,
exp = NULL,
...

)

S3 method for class 'list'
forestplotRegrObj(
regr.obj,
postprocess_estimates.fn = function(x) x,
rowname = "Variable",
ci.txt = "CI",
ci.glue = "{lower} to {higher}",
digits = 1,
get_box_size = fpBoxSize,
xlab = NULL,
xlog = NULL,
zero = NULL,
estimate.txt = NULL,
exp = NULL,
...

)

forestplotRegrObj 13

fpBoxSize(p_values, variable_count, boxsize, significant = 0.05)

Arguments

regr.obj A regression model object. It should be of coxph, crr or glm class. Warning:
The glm is not fully tested.

postprocess_estimates.fn

A function that takes the regression outputs and returns the same data with mod-
ifications. The input columns are:
* ‘Rowname‘ * ‘Coef‘ * ‘Lower‘ * ‘Upper‘ * ‘Sort‘

rowname The name of the variables

ci.txt The text above the confidence interval, defaults to ‘"CI"‘

ci.glue The string used for [glue::glue()] the ‘lower‘ and ‘higher‘ confidence intervals
together.

digits The number of digits to round presented values to

get_box_size A function for extracting the box sizes

... Passed to forestplot()

xlab x-axis label

estimate.txt The text above the estimate, e.g. Est, HR

xlog If TRUE, x-axis tick marks are to follow a logarithmic scale, e.g. for logistic
regression (OR), survival estimates (HR), Poisson regression etc. Note: This is
an intentional break with the original forestplot function as I’ve found that
exponentiated ticks/clips/zero effect are more difficult to for non-statisticians
and there are sometimes issues with rounding the tick marks properly.

zero Indicates what is zero effect. For survival/logistic fits the zero is 1 while in most
other cases it’s 0.

exp Report in exponential form. Default true since the function was built for use
with survival models.

p_values The p-values that will work as the foundation for the box size

variable_count The number of variables

boxsize The default box size

significant Level of significance .05

See Also

Other forestplot wrappers: forestplotCombineRegrObj()

Examples

org.par <- par("ask" = TRUE)

library(tidyverse)
simulated data to test
set.seed(102)

14 isFitCoxPH

cov <- tibble(ftime = rexp(200)) |>
mutate(x1 = runif(n()),

x2 = runif(n()),
x3 = runif(n()),
fstatus1 = if_else(x1 * 1 +

x2 * 0.2 +
x3 * 0.5 +
runif(n()) * 0.5 > 1,

1, 0),
fstatus2 = if_else(x1 * 0.2 +

x2 * 0.5 +
x3 * 0.1 +
runif(n()) * 2 > 1,

1, 0)) |>
Add some column labels
Gmisc::set_column_labels(x1 = "First variable",

x2 = "Second variable")

library(rms)
dd <- datadist(cov)
options(datadist = "dd")

fit1 <- cph(Surv(ftime, fstatus1 == 1) ~ x1 + x2 + x3, data = cov)

fit1 |>
forestplotRegrObj() |>
fp_set_zebra_style("#f0f0f0")

fit2 <- update(fit1, Surv(ftime, fstatus2 == 1) ~ .)
list("Frist model" = fit1, "Second model" = fit2) |>

forestplotRegrObj(legend_args = fpLegend(title = "Type of regression"),
postprocess_estimates.fn = function(x) {

x |>
filter(str_detect(column_term, "(x2|x3)"))

}) |>
fp_set_style(box = rep(c("darkblue", "darkred"), each = 3))

par(org.par)

isFitCoxPH Functions for checking regression type

Description

The isFitCoxPH A simple check if object inherits either "coxph" or "crr" class indicating that it is a
survival function.

isFitCoxPH 15

Usage

isFitCoxPH(fit)

isFitLogit(fit)

Arguments

fit Regression object

Value

boolean Returns TRUE if the object is of that type otherwise it returns FALSE.

Examples

simulated data to use
set.seed(10)
ds <- data.frame(

ftime = rexp(200),
fstatus = sample(0:1, 200, replace = TRUE),
x1 = runif(200),
x2 = runif(200),
x3 = runif(200)

)

library(survival)
library(rms)

dd <- datadist(ds)
options(datadist = "dd")

s <- Surv(ds$ftime, ds$fstatus == 1)
fit <- cph(s ~ x1 + x2 + x3, data = ds)

if (isFitCoxPH(fit)) {
print("Correct, the cph is of cox PH hazard type")

}

fit <- coxph(s ~ x1 + x2 + x3, data = ds)
if (isFitCoxPH(fit)) {

print("Correct, the coxph is of cox PH hazard type")
}

library(cmprsk)
set.seed(10)
ftime <- rexp(200)
fstatus <- sample(0:2, 200, replace = TRUE)
cov <- matrix(runif(600), nrow = 200)
dimnames(cov)[[2]] <- c("x1", "x2", "x3")
fit <- crr(ftime, fstatus, cov)

if (isFitCoxPH(fit)) {

16 isFitCoxPH

print(paste(
"Correct, the competing risk regression is",
"considered a type of cox regression",
"since it has a Hazard Ratio"

))
}
** Borrowed code from the lrm example **

Fit a logistic model containing predictors age, blood.pressure, sex
and cholesterol, with age fitted with a smooth 5-knot restricted cubic
spline function and a different shape of the age relationship for males
and females.

n <- 1000 # define sample size
set.seed(17) # so can reproduce the results
age <- rnorm(n, 50, 10)
blood.pressure <- rnorm(n, 120, 15)
cholesterol <- rnorm(n, 200, 25)
sex <- factor(sample(c("female", "male"), n, TRUE))
label(age) <- "Age" # label is in Hmisc
label(cholesterol) <- "Total Cholesterol"
label(blood.pressure) <- "Systolic Blood Pressure"
label(sex) <- "Sex"
units(cholesterol) <- "mg/dl" # uses units.default in Hmisc
units(blood.pressure) <- "mmHg"

To use prop. odds model, avoid using a huge number of intercepts by
grouping cholesterol into 40-tiles

Specify population model for log odds that Y = 1
L <- .4 * (sex == "male") + .045 * (age - 50) +

(log(cholesterol - 10) - 5.2) * (-2 * (sex == "female") + 2 * (sex == "male"))
Simulate binary y to have Prob(y = 1) = 1/[1+exp(-L)]
y <- ifelse(runif(n) < plogis(L), 1, 0)
cholesterol[1:3] <- NA # 3 missings, at random

ddist <- datadist(age, blood.pressure, cholesterol, sex)
options(datadist = "ddist")

fit_lrm <- lrm(y ~ blood.pressure + sex * (age + rcs(cholesterol, 4)),
x = TRUE, y = TRUE

)

if (isFitLogit(fit_lrm) == TRUE) {
print("Correct, the lrm is a logistic regression")

}

fit_lm <- lm(blood.pressure ~ sex)
if (isFitLogit(fit_lm) == FALSE) {

print("Correct, the lm is not a logistic regression")
}

fit_glm_logit <- glm(y ~ blood.pressure + sex * (age + rcs(cholesterol, 4)),

plotHR 17

family = binomial()
)

if (isFitLogit(fit_glm_logit) == TRUE) {
print("Correct, the glm with a family of binomial is a logistic regression")

}

fit_glm <- glm(blood.pressure ~ sex)
if (isFitLogit(fit_glm) == FALSE) {

print("Correct, the glm without logit as a family is not a logistic regression")
}

plotHR Plot a spline in a Cox regression model

Description

This function is a more specialized version of the termplot() function. It creates a plot with the
spline against hazard ratio. The plot can additianally have indicator of variable density and have
multiple lines.

Usage

plotHR(
models,
term = 1,
se = TRUE,
cntrst = ifelse(inherits(models, "rms") || inherits(models[[1]], "rms"), TRUE, FALSE),
polygon_ci = TRUE,
rug = "density",
xlab = "",
ylab = "Hazard Ratio",
main = NULL,
xlim = NULL,
ylim = NULL,
col.term = "#08519C",
col.se = "#DEEBF7",
col.dens = grey(0.9),
lwd.term = 3,
lty.term = 1,
lwd.se = lwd.term,
lty.se = lty.term,
x.ticks = NULL,
y.ticks = NULL,
ylog = TRUE,
cex = 1,
y_axis_side = 2,
plot.bty = "n",

18 plotHR

axes = TRUE,
alpha = 0.05,
...

)

S3 method for class 'plotHR'
print(x, ...)

S3 method for class 'plotHR'
plot(x, y, ...)

Arguments

models A single model or a list() with several models

term The term of interest. Can be either the name or the number of the covariate in
the model.

se Boolean if you want the confidence intervals or not

cntrst By contrasting values you can have the median as a reference point making it
easier to compare hazard ratios.

polygon_ci If you want a polygon as indicator for your confidence interval. This can also
be in the form of a vector if you have several models. Sometimes you only want
one model to have a polygon and the rest to be dotted lines. This gives the reader
an indication of which model is important.

rug The rug is the density of the population along the spline variable. Often this
is displayed as a jitter with bars that are thicker & more common when there
are more observations in that area or a smooth density plot that looks like a
mountain. Use "density" for the mountain view and "ticks" for the jitter format.

xlab The label of the x-axis

ylab The label of the y-axis

main The main title of the plot

xlim A vector with 2 elements containing the upper & the lower bound of the x-axis

ylim A vector with 2 elements containing the upper & the lower bound of the y-axis

col.term The color of the estimate line. If multiple lines you can have different colors by
giving a vector.

col.se The color of the confidence interval. If multiple lines you can have different
colors by giving a vector.

col.dens The color of the density plot. Ignored if you’re using jitter

lwd.term The width of the estimated line. If you have more than one model then provide
the function with a vector if you want to have different lines for different width
for each model.

lty.term The typeof the estimated line, see lty. If you have more than one model then
provide the function with a vector if you want to have different line types for for
each model.

plotHR 19

lwd.se The line width of your confidence interval. This is ignored if you’re using poly-
gons for all the confidence intervals.

lty.se The line type of your confidence interval. This is ignored if you’re using poly-
gons for all the confidence intervals.

x.ticks The ticks for the x-axis if you desire other than the default.

y.ticks The ticks for the y-axis if you desire other than the default.

ylog Show a logarithmic y-axis. Not having a logarithmic axis might seem easier to
understand but it’s actually not really a good idea. The distance between HR
0.5 and 2.0 should be the same. This will only show on a logarithmic scale and
therefore it is strongly recommended to use the logarithmic scale.

cex Increase if you want larger font size in the graph.

y_axis_side The side that the y axis is to be plotted, see axis() for details

plot.bty Type of box that you want. See the bty description in graphical parameters
(par). If bty is one of "o" (the default), "l", "7", "c", "u", or "]" the resulting box
resembles the corresponding upper case letter. A value of "n" suppresses the
box.

axes A boolean that is used to identify if axes are to be plotted

alpha The alpha level for the confidence intervals

... Any additional values that are to be sent to the plot() function

x Sent the ‘plotHR‘ object to plot

y Ignored in plot

Value

The function does not return anything

Multiple models in one plot

The function allows for plotting multiple splines in one graph. Sometimes you might want to show
more than one spline for the same variable. This allows you to create that comparison.

Examples of a situation where I’ve used multiple splines in one plot is when I want to look at a
variables behavior in different time periods. This is another way of looking at the proportional
hazards assumption. The Schoenfeld residuals can be a little tricky to look at when you have the
splines.

Another example of when I’ve used this is when I’ve wanted to plot adjusted and unadjusted splines.
This can very nicely demonstrate which of the variable span is mostly confounded. For instance -
younger persons may exhibit a higher risk for a procedure but when you put in your covariates you
find that the increased hazard changes back to the basic

Author(s)

Reinhard Seifert, Max Gordon

20 plotHR

Examples

org_par <- par(xaxs = "i", ask = TRUE)
library(survival)
library(rms)
library(dplyr)
library(Gmisc)

Get data for example
n <- 1000
set.seed(731)

ds <- tibble(age = round(50 + 12 * rnorm(n), 1),
smoking = sample(c("Yes", "No"), n, rep = TRUE, prob = c(.2, .75)),
sex = sample(c("Male", "Female"), n, rep = TRUE, prob = c(.6, .4))) |>

Build outcome
mutate(h = .02 * exp(.02 * (age - 50) + .1 *

((age - 50) / 10)^3 + .8 *
(sex == "Female") + 2 *
(smoking == "Yes")),

cens = 15 * runif(n),
dt = -log(runif(n)) / h,
e = if_else(dt <= cens, 1, 0),
dt = pmin(dt, cens),
Add missing data to smoking
smoking = case_when(runif(n) < 0.05 ~ NA_character_,

TRUE ~ smoking)) |>
set_column_labels(age = "Age",

dt = "Follow-up time") |>
set_column_units(dt = "Year")

library(splines)
fit.coxph <- coxph(Surv(dt, e) ~ bs(age, 3) + sex + smoking, data = ds)

plotHR(fit.coxph, term = "age", plot.bty = "o", xlim = c(30, 70), xlab = "Age")

dd <- datadist(ds)
options(datadist = "dd")
fit.cph <- cph(Surv(dt, e) ~ rcs(age, 4) + sex + smoking, data = ds, x = TRUE, y = TRUE)

plotHR(fit.cph,
term = 1,
plot.bty = "L",
xlim = c(30, 70),
ylim = 2^c(-3, 3),
xlab = "Age"

)

plotHR(fit.cph,
term = "age",
plot.bty = "l",
xlim = c(30, 70),

robcov_alt 21

ylog = FALSE,
rug = "ticks",
xlab = "Age"

)

unadjusted_fit <- cph(Surv(dt, e) ~ rcs(age, 4), data = ds, x = TRUE, y = TRUE)
plotHR(list(fit.cph, unadjusted_fit),

term = "age",
xlab = "Age",
polygon_ci = c(TRUE, FALSE),
col.term = c("#08519C", "#77777799"),
col.se = c("#DEEBF7BB", grey(0.6)),
lty.term = c(1, 2),
plot.bty = "l", xlim = c(30, 70)

)
par(org_par)

robcov_alt Robust covariance matrix based upon the ’sandwich’-package

Description

This is an alternative to the ’rms’-package robust covariance matrix that uses the ’sandwich’ pack-
age vcovHC() function instead of the ’rms’-built-in estimator. The advantage being that many more
estimation types are available.

Usage

robcov_alt(fit, type = "HC3", ...)

Arguments

fit The ols fit that

type a character string specifying the estimation type. See vcovHC() for options.

... You should specify type= followed by some of the alternative available for the
vcovHC() function.

Value

model The fitted model with adjusted variance and df.residual set to NULL

Examples

Generate some data
n <- 500
x1 <- runif(n) * 2
x2 <- runif(n)
y <- x1^3 + x2 + rnorm(n)

22 tidy.rms

library(rms)
library(sandwich)
dd <- datadist(x1, x2, y)
org.op <- options(datadist = "dd")

Main function
f <- ols(y ~ rcs(x1, 3) + x2)

Check the bread
bread(f)
Check the HC-matrix
vcovHC(f, type = "HC4m")
Adjust the model so that it uses the HC4m variance
f_rob <- robcov_alt(f, type = "HC4m")
Get the new HC4m-matrix
- this function just returns the f_rob$var matrix
vcov(f_rob)
Now check the confidence interval for the function
confint(f_rob)

options(org.op)

tidy.rms Tidy a(n) rms model object

Description

Tidy summarizes information about the components of a model. A model component might be a
single term in a regressions. Exactly what tidy considers to be a model component varies across
models but is usually self-evident. If a model has several distinct types of components, you will
need to specify which components to return.

Usage

S3 method for class 'rms'
tidy(
x,
conf.int = FALSE,
conf.level = 0.95,
exponentiate = FALSE,
...,
.add_print_p_and_stat_values = getOption("Greg.tidy_add_p_and_stat_values", default =

FALSE)
)

Arguments

x An rms model, e.g. [‘rms::cph()‘], [‘rms::lrm()‘]

tidy.rms 23

conf.int Logical indicating whether or not to include a confidence interval in the tidied
output. Defaults to FALSE.

conf.level The confidence level to use for the confidence interval if conf.int = TRUE. Must
be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to
a 95 percent confidence interval.

exponentiate Logical indicating whether or not to exponentiate the the coefficient estimates.
This is typical for logistic and multinomial regressions, but a bad idea if there is
no log or logit link. Defaults to FALSE.

... Additional arguments. Not used. Needed to match generic signature only. Cau-
tionary note: Misspelled arguments will be absorbed in ..., where they will be
ignored. If the misspelled argument has a default value, the default value will be
used. For example, if you pass conf.lvel = 0.9, all computation will proceed
using conf.level = 0.95. Two exceptions here are:

• tidy() methods will warn when supplied an exponentiate argument if it
will be ignored.

• augment() methods will warn when supplied a newdata argument if it will
be ignored.

.add_print_p_and_stat_values

For estimating print values there is a workaround that relies on capturing output
from the ‘print(x)‘ and is not considered safe.

Details

This is a quick fix for addressing the lack of ‘rms‘-compatibility with the ‘broom‘ package, see
[broom issue 30](https://github.com/tidymodels/broom/issues/30).

Value

A tibble::tibble() with columns: - ‘term‘ The name of the regression term. - ‘factor‘ The factor if
the term is a character/factor term. - ‘column_term‘ The full name as in the original input data -
‘estimate‘ The estimated value of the regression term. - ‘conf.high‘ Upper bound on the confidence
interval for the estimate.c - ‘conf.low‘ Lower bound on the confidence interval for the estimate. -
‘p.value‘ The two-sided p-value associated with the observed statistic. - ‘statistic‘ The value of a
statistic to use in a hypothesis that the regression term is non-zero. - ‘std.error‘ The standard error
of the regression term.

Examples

library(rms)
library(broom)
library(tidyverse)

set.seed(10)
cov <- tibble(x1 = runif(200)) |>

mutate(x_bool_fact = if_else(x1 > 0.5,
"Yes",
sample(c("Yes", "No"), size = n(), replace = TRUE)),

x_multi_fact = sample(c("Strange", "Factor", "Names"), size = n(), replace = TRUE),

24 timeSplitter

ftime = rexp(n()),
fstatus = sample(0:1, size = n(), replace = TRUE),
x_good_predictor = fstatus * runif(n()))

ddist <- datadist(cov)
options(datadist = "ddist")

cph_fit <- cph(Surv(ftime, fstatus) ~ x1 + x_bool_fact +
x_multi_fact + x_good_predictor, data = cov)

tidy(cph_fit)

timeSplitter A function for splitting a time according to time periods

Description

If we have a violation of the cox proprtional hazards assumption we need to split an individual’s
followup time into several. See vignette("timeSplitter", package = "Greg") for a detailed
description.

Usage

timeSplitter(
data,
by,
time_var,
event_var,
event_start_status,
time_related_vars,
time_offset

)

Arguments

data The dataset that you want to split according to the time_var option.
by The time period that you want to split the dataset by. The size of the variable

must be in proportion to the the time_var. The by variable can also be a vector
for each time split, useful if the effect has large varyations over time.

time_var The name of the main time variable in the dataset. This variable must be a
numeric variable.

event_var The event variable
event_start_status

The start status of the event status, e.g. "Alive"
time_related_vars

A dataset often contains other variabels that you want to update during the split,
most commonly these are age or calendar time.

time_offset If you want to skip the initial years you can offset the entire dataset by setting
this variable. See detailed description below.

timeSplitter 25

Details

Important note: The time variables must have the same time unit. I.e. function can not dedu if all
variables are in years or if one happens to be in days.

Value

data.frame with the split data. The starting time for each period is named Start_time and the
ending time is called Stop_time. Note that the resulting event_var will now contain the time-
splitted eventvar.

The time_offset - details

Both time_var and other variables will be adjusted by the time_offset, e.g. if we the time scale is
in years and we want to skip the first 4 years we set the time_offset = 4. In the outputted dataset
the smallest time_var will be 0. Note: 0 will not be included as we generally want to look at those
that survived the start date, e.g. if a patient dies on the 4-year mark we would not include him/her
in our study.

Examples

test_data <- data.frame(
id = 1:4,
time = c(4, 3.5, 1, 5),
event = c("alive", "censored", "dead", "dead"),
age = c(62.2, 55.3, 73.7, 46.3),
date = as.Date(
c("2003-01-01",

"2010-04-01",
"2013-09-20",
"2002-02-23")),

stringsAsFactors = TRUE
)
timeSplitter(test_data, .5,

time_var = "time",
time_related_vars = c("age", "date"),
event_var = "event")

Index

∗ forestplot wrappers
forestplotCombineRegrObj, 8
forestplotRegrObj, 10

addNonlinearity, 3
AIC, 4
anova, 3

BIC, 4

caDescribeOpts, 5
confint, 6
confint.ols, 6
confint_robust, 7
coxph, 3

describeFactors, 5
describeMean, 5
detectCores, 4

forestplot, 9, 13
forestplotCombineRegrObj, 8, 13
forestplotRegrObj, 9, 10
fpBoxSize (forestplotRegrObj), 10

Greg-package, 2

isFitCoxPH, 14
isFitLogit (isFitCoxPH), 14

makeCluster, 4

ns, 3

ols, 2, 6

plot.plotHR (plotHR), 17
plotHR, 17
print.plotHR (plotHR), 17
printCrudeAndAdjustedModel, 5
prNlChooseDf, 4

rcs, 3
robcov_alt, 21

termplot, 17
tidy.rms, 22
timeSplitter, 2, 24

vcovHC, 7, 21

26

	Greg-package
	addNonlinearity
	caDescribeOpts
	confint.ols
	confint_robust
	forestplotCombineRegrObj
	forestplotRegrObj
	isFitCoxPH
	plotHR
	robcov_alt
	tidy.rms
	timeSplitter
	Index

