Title: | Advanced Forest Plot Using 'grid' Graphics |
---|---|
Description: | Allows the creation of forest plots with advanced features, such as multiple confidence intervals per row, customizable fonts for individual text elements, and flexible confidence interval drawing. It also supports mixing text with mathematical expressions. The package extends the application of forest plots beyond traditional meta-analyses, offering a more general version of the original 'rmeta' package’s forestplot() function. It relies heavily on the 'grid' package for rendering the plots. |
Authors: | Max Gordon [aut, cre], Thomas Lumley [aut, ctb] |
Maintainer: | Max Gordon <[email protected]> |
License: | GPL-2 |
Version: | 3.1.6 |
Built: | 2025-01-17 06:40:23 UTC |
Source: | https://github.com/gforge/forestplot |
The forest plot function, forestplot()
, is a more general
version of the original rmeta-packages forestplot
implementation. The aim is at using forest plots for more than
just meta-analyses.
The forestplot:
Allows for multiple confidence intervals per row
Custom fonts for each text element
Custom confidence intervals
Text mixed with expressions
Legends both on top/left of the plot and within the graph
Custom line height including auto-adapt height
Graph width that auto-adapts
Flexible arguments
and more
The getTicks
tries to format ticks for plots in a nicer way.
The major use is for exponential form where ticks are generated using the
since a doubling is a concept easy to grasp for less mathematical-savvy
readers.
Maintainer: Max Gordon [email protected]
Authors:
Thomas Lumley [contributor]
Useful links:
tidyselect
As forestpot has evolved we now primarily use tidyverse
select style. This
function helps with backward compatibility
assertAndRetrieveTidyValue( x, value, name = deparse(substitute(value)), optional = FALSE )
assertAndRetrieveTidyValue( x, value, name = deparse(substitute(value)), optional = FALSE )
x |
The data with the potential value |
value |
The value |
name |
The name of the value |
optional |
Is the value optional |
value with attribute
The data is a dataframe with the Swedish and the Danish coefficients for health related quality of life (HRQoL) 1 year after total hip arthroplasty surgery. The age is modeled as a spline and is therefore presented as a contrast.
Max Gordon [email protected]
This function generates a forest plot with extended capabilities compared to
the default forestplot()
function in the rmeta
package. It overcomes some limitations
of the original function, including the addition of expressions, use of multiple confidence
bands per label, autosizing to viewport, and uses modern tidyverse syntax. Refer to vignette("forestplot")
for comprehensive details.
forestplot(...) ## S3 method for class 'data.frame' forestplot(x, mean, lower, upper, labeltext, is.summary, boxsize, ...) ## Default S3 method: forestplot( labeltext, mean, lower, upper, align = NULL, is.summary = FALSE, graph.pos = "right", hrzl_lines = NULL, clip = c(-Inf, Inf), xlab = NULL, zero = ifelse(xlog, 1, 0), graphwidth = "auto", colgap = NULL, lineheight = "auto", line.margin = NULL, col = fpColors(), txt_gp = fpTxtGp(), xlog = FALSE, xticks = NULL, xticks.digits = 2, grid = FALSE, lwd.xaxis = NULL, lwd.zero = 1, lwd.ci = NULL, lty.ci = 1, ci.vertices = NULL, ci.vertices.height = 0.1, boxsize = NULL, mar = unit(rep(5, times = 4), "mm"), title = NULL, legend = NULL, legend_args = fpLegend(), new_page = getOption("forestplot_new_page", TRUE), fn.ci_norm = fpDrawNormalCI, fn.ci_sum = fpDrawSummaryCI, fn.legend = NULL, shapes_gp = fpShapesGp(), ... ) ## S3 method for class 'gforge_forestplot' print(x, ...) ## S3 method for class 'gforge_forestplot' plot(x, y, ..., new_page = FALSE) ## S3 method for class 'grouped_df' forestplot(x, labeltext, mean, lower, upper, legend, is.summary, boxsize, ...)
forestplot(...) ## S3 method for class 'data.frame' forestplot(x, mean, lower, upper, labeltext, is.summary, boxsize, ...) ## Default S3 method: forestplot( labeltext, mean, lower, upper, align = NULL, is.summary = FALSE, graph.pos = "right", hrzl_lines = NULL, clip = c(-Inf, Inf), xlab = NULL, zero = ifelse(xlog, 1, 0), graphwidth = "auto", colgap = NULL, lineheight = "auto", line.margin = NULL, col = fpColors(), txt_gp = fpTxtGp(), xlog = FALSE, xticks = NULL, xticks.digits = 2, grid = FALSE, lwd.xaxis = NULL, lwd.zero = 1, lwd.ci = NULL, lty.ci = 1, ci.vertices = NULL, ci.vertices.height = 0.1, boxsize = NULL, mar = unit(rep(5, times = 4), "mm"), title = NULL, legend = NULL, legend_args = fpLegend(), new_page = getOption("forestplot_new_page", TRUE), fn.ci_norm = fpDrawNormalCI, fn.ci_sum = fpDrawSummaryCI, fn.legend = NULL, shapes_gp = fpShapesGp(), ... ) ## S3 method for class 'gforge_forestplot' print(x, ...) ## S3 method for class 'gforge_forestplot' plot(x, y, ..., new_page = FALSE) ## S3 method for class 'grouped_df' forestplot(x, labeltext, mean, lower, upper, legend, is.summary, boxsize, ...)
... |
Passed on to the |
x |
The |
mean |
The name of the column if using the dplyr select syntax - defaults to "mean", else it should be a vector or a matrix with the averages. You can also provide a 2D/3D matrix that is automatically converted to the lower/upper parameters. The values should be in exponentiated form if they follow this interpretation, e.g. use exp(mean) if you have the output from a logistic regression |
lower |
The lower bound of the confidence interval for the forestplot, needs to be the same format as the mean. |
upper |
The upper bound of the confidence interval for the forestplot, needs to be the same format as the mean. |
labeltext |
A list, matrix, vector or expression with the names of each
row or the name of the column if using the dplyr select syntax - defaults to "labeltext".
Note that when using |
is.summary |
A vector indicating by |
boxsize |
Override the default box size based on precision |
align |
Vector giving alignment (l,r,c) for the table columns |
graph.pos |
The position of the graph element within the table of text. The
position can be |
hrzl_lines |
Add horizontal lines to graph. Can either be |
clip |
Lower and upper limits for clipping confidence intervals to arrows |
xlab |
x-axis label |
zero |
x-axis coordinate for zero line. If you provide a vector of length 2 it will print a rectangle instead of just a line. If you provide NA the line is suppressed. |
graphwidth |
Width of confidence interval graph, see |
colgap |
Sets the gap between columns, defaults to 6 mm but for relative widths.
Note that the value should be in |
lineheight |
Height of the graph. By default this is |
line.margin |
Set the margin between rows, provided in numeric or |
col |
Set the colors for all the elements. See |
txt_gp |
Set the fonts etc for all text elements. See |
xlog |
If TRUE, x-axis tick marks are to follow a logarithmic scale, e.g. for
logistic regression (OR), survival estimates (HR), Poisson regression etc.
Note: This is an intentional break with the original |
xticks |
Optional user-specified x-axis tick marks. Specify NULL to use
the defaults, numeric(0) to omit the x-axis. By adding a labels-attribute,
|
xticks.digits |
The number of digits to allow in the x-axis if this is created by default |
grid |
If you want a discrete gray dashed grid at the level of the
ticks you can set this parameter to |
lwd.xaxis |
lwd for the xaxis, see |
lwd.zero |
lwd for the vertical line that gives the no-effect line, see |
lwd.ci |
lwd for the confidence bands, see |
lty.ci |
lty for the confidence bands, see |
ci.vertices |
Set this to TRUE if you want the ends of the confidence intervals to be shaped as a T. This is set default to TRUE if you have any other line type than 1 since there is a risk of a dash occurring at the very end, i.e. showing incorrectly narrow confidence interval. |
ci.vertices.height |
The height hoft the vertices. Defaults to npc units corresponding to 10% of the row height. Note that the arrows correspond to the vertices heights. |
mar |
A numerical vector of the form |
title |
The title of the plot if any |
legend |
Legend corresponding to the number of bars |
legend_args |
The legend arguments as returned by the |
new_page |
If you want the plot to appear on a new blank page then set this to |
fn.ci_norm |
You can specify exactly how the line with the box is
drawn for the normal (i.e. non-summary) confidence interval by changing this
parameter to your own function or some of the alternatives provided in the package.
It defaults to the box function |
fn.ci_sum |
Same as previous argument but for the summary outputs
and it defaults to |
fn.legend |
What type of function should be used for drawing the
legends, this can be a list if you want different functions. It defaults to
a box if you have anything else than a single function or the number of columns
in the |
shapes_gp |
Sets graphical parameters (squares and lines widths, styles, etc.)
of all shapes drawn (squares, lines, diamonds, etc.). This overrides |
y |
Ignored |
This version of forestplot()
enhances the standard function in the following ways:
Adding Expressions: Allows the use of expressions, such as expression(beta)
.
Multiple Bands: Enables multiple confidence bands for the same label.
Autosize: Adapts to the viewport (graph) size.
Tidyverse syntax: Utilizes convenient dplyr/tidyverse syntax for more flexible data manipulation.
gforge_forestplot
object
Multiple bands (or lines) per variable can be useful for comparing different outcomes. For instance, you may want to compare heart disease-specific survival to overall survival rates for smokers. It can be insightful to overlay two bands for this purpose. Another application could be displaying crude and adjusted estimates as separate bands.
The hrzl_lines
argument can be set as TRUE
or a list
with grid::gpar
elements.
TRUE
: A line will be added based upon the is.summary
rows. If the first line is a summary it
grid::gpar
: The same as above but the lines will be formatted according to the grid::gpar
element
list
: The list must either be numbered, i.e. list("2" = gpar(lty = 1))
, or have the same length
as the NROW(mean) + 1
. If the list is numbered the numbers should not exceed the NROW(mean) + 1
.
The no. 1 row designates the top, i.e. the line above the first row, all other correspond to
the row below. Each element in the list needs to be TRUE
, NULL
, or
gpar
element. The TRUE
defaults to a standard line, the NULL
skips a line, while gpar
corresponds to the fully customized line. Apart from
allowing standard gpar
line descriptions, lty
, lwd
, col
, and more
you can also specify gpar(columns = c(1:3, 5))
if you for instance want the line to skip a column.
The x-axis does not completely adhere to the margin.
Autosizing boxes may not always yield the best visual result; manual adjustment is recommended where possible.
rmeta
package's forestplot
xlog: Outputs the axis in log() format, but the input data should be in antilog/exp format.
col: The corresponding function in this package is fpColors
.
Max Gordon, Thomas Lumley
vignette("forestplot")
Other forestplot functions:
fpColors()
,
fpDrawNormalCI()
,
fpLegend()
,
fpShapesGp()
,
fp_add_lines()
,
fp_decorate_graph()
,
fp_insert_row()
,
fp_set_style()
,
fp_set_zebra_style()
############################################# # Simple examples of how to do a forestplot # ############################################# ask <- par(ask = TRUE) # A basic example, create some fake data row_names <- list(list("test = 1", expression(test >= 2))) test_data <- data.frame( coef = c(1.59, 1.24), low = c(1.4, 0.78), high = c(1.8, 1.55) ) test_data |> forestplot(labeltext = row_names, mean = coef, lower = low, upper = high, zero = 1, cex = 2, lineheight = "auto", xlab = "Lab axis txt") |> fp_add_header("Group") |> fp_set_style(lines = gpar(col = "darkblue")) # Print two plots side by side using the grid # package's layout option for viewports fp1 <- test_data |> forestplot(labeltext = row_names, mean = coef, lower = low, upper = high, zero = 1, cex = 2, lineheight = "auto", title = "Plot 1", xlab = "Lab axis txt") fp2 <- test_data |> forestplot(labeltext = row_names, mean = coef, lower = low, upper = high, zero = 1, cex = 2, lineheight = "auto", xlab = "Lab axis txt", title = "Plot 2", new_page = FALSE) grid.newpage() pushViewport(viewport(layout = grid.layout(1, 2))) pushViewport(viewport(layout.pos.col = 1)) plot(fp1) popViewport() pushViewport(viewport(layout.pos.col = 2)) plot(fp2) popViewport(2) # An advanced example library(dplyr) library(tidyr) test_data <- data.frame(id = 1:4, coef1 = c(1, 1.59, 1.3, 1.24), coef2 = c(1, 1.7, 1.4, 1.04), low1 = c(1, 1.3, 1.1, 0.99), low2 = c(1, 1.6, 1.2, 0.7), high1 = c(1, 1.94, 1.6, 1.55), high2 = c(1, 1.8, 1.55, 1.33)) # Convert into dplyr formatted data out_data <- test_data |> pivot_longer(cols = everything() & -id) |> mutate(group = gsub("(.+)([12])$", "\\2", name), name = gsub("(.+)([12])$", "\\1", name)) |> pivot_wider() |> group_by(id) |> mutate(col1 = lapply(id, \(x) ifelse(x < 4, paste("Category", id), expression(Category >= 4))), col2 = lapply(1:n(), \(i) substitute(expression(bar(x) == val), list(val = mean(coef) |> round(2)))), col2 = if_else(id == 1, rep("ref", n()) |> as.list(), col2)) |> group_by(group) out_data |> forestplot(mean = coef, lower = low, upper = high, labeltext = c(col1, col2), title = "Cool study", zero = c(0.98, 1.02), grid = structure(c(2^-.5, 2^.5), gp = gpar(col = "steelblue", lty = 2) ), boxsize = 0.25, xlab = "The estimates", new_page = TRUE, legend = c("Treatment", "Placebo"), legend_args = fpLegend( pos = list("topright"), title = "Group", r = unit(.1, "snpc"), gp = gpar(col = "#CCCCCC", lwd = 1.5) )) |> fp_set_style(box = c("royalblue", "gold"), line = c("darkblue", "orange"), summary = c("darkblue", "red")) # An example of how the exponential works data.frame(coef = c(2.45, 0.43), low = c(1.5, 0.25), high = c(4, 0.75), boxsize = c(0.25, 0.25), variables = c("Variable A", "Variable B")) |> forestplot(labeltext = c(variables, coef), mean = coef, lower = low, upper = high, boxsize = boxsize, zero = 1, xlog = TRUE) |> fp_set_style(lines = "red", box = "darkred") |> fp_add_header(coef = "HR" |> fp_txt_plain() |> fp_align_center(), variables = "Measurements") # An example using style forestplot(labeltext = cbind(Author = c("Smith et al", "Smooth et al", "Al et al")), mean = cbind(1:3, 1.5:3.5), lower = cbind(0:2, 0.5:2.5), upper = cbind(4:6, 5.5:7.5), is.summary = c(FALSE, FALSE, TRUE), vertices = TRUE) |> fp_set_style(default = gpar(lineend = "square", linejoin = "mitre", lwd = 3, col = "pink"), box = gpar(fill = "black", col = "red"), # only one parameter lines = list( # as many parameters as CI gpar(lwd = 10), gpar(lwd = 5), gpar(), gpar(), gpar(lwd = 2), gpar(lwd = 1) ), summary = list( # as many parameters as band per label gpar(fill = "violet", col = "gray", lwd = 10), gpar(fill = "orange", col = "gray", lwd = 10) )) par(ask = ask) # See vignette for a more detailed description # vignette("forestplot", package="forestplot")
############################################# # Simple examples of how to do a forestplot # ############################################# ask <- par(ask = TRUE) # A basic example, create some fake data row_names <- list(list("test = 1", expression(test >= 2))) test_data <- data.frame( coef = c(1.59, 1.24), low = c(1.4, 0.78), high = c(1.8, 1.55) ) test_data |> forestplot(labeltext = row_names, mean = coef, lower = low, upper = high, zero = 1, cex = 2, lineheight = "auto", xlab = "Lab axis txt") |> fp_add_header("Group") |> fp_set_style(lines = gpar(col = "darkblue")) # Print two plots side by side using the grid # package's layout option for viewports fp1 <- test_data |> forestplot(labeltext = row_names, mean = coef, lower = low, upper = high, zero = 1, cex = 2, lineheight = "auto", title = "Plot 1", xlab = "Lab axis txt") fp2 <- test_data |> forestplot(labeltext = row_names, mean = coef, lower = low, upper = high, zero = 1, cex = 2, lineheight = "auto", xlab = "Lab axis txt", title = "Plot 2", new_page = FALSE) grid.newpage() pushViewport(viewport(layout = grid.layout(1, 2))) pushViewport(viewport(layout.pos.col = 1)) plot(fp1) popViewport() pushViewport(viewport(layout.pos.col = 2)) plot(fp2) popViewport(2) # An advanced example library(dplyr) library(tidyr) test_data <- data.frame(id = 1:4, coef1 = c(1, 1.59, 1.3, 1.24), coef2 = c(1, 1.7, 1.4, 1.04), low1 = c(1, 1.3, 1.1, 0.99), low2 = c(1, 1.6, 1.2, 0.7), high1 = c(1, 1.94, 1.6, 1.55), high2 = c(1, 1.8, 1.55, 1.33)) # Convert into dplyr formatted data out_data <- test_data |> pivot_longer(cols = everything() & -id) |> mutate(group = gsub("(.+)([12])$", "\\2", name), name = gsub("(.+)([12])$", "\\1", name)) |> pivot_wider() |> group_by(id) |> mutate(col1 = lapply(id, \(x) ifelse(x < 4, paste("Category", id), expression(Category >= 4))), col2 = lapply(1:n(), \(i) substitute(expression(bar(x) == val), list(val = mean(coef) |> round(2)))), col2 = if_else(id == 1, rep("ref", n()) |> as.list(), col2)) |> group_by(group) out_data |> forestplot(mean = coef, lower = low, upper = high, labeltext = c(col1, col2), title = "Cool study", zero = c(0.98, 1.02), grid = structure(c(2^-.5, 2^.5), gp = gpar(col = "steelblue", lty = 2) ), boxsize = 0.25, xlab = "The estimates", new_page = TRUE, legend = c("Treatment", "Placebo"), legend_args = fpLegend( pos = list("topright"), title = "Group", r = unit(.1, "snpc"), gp = gpar(col = "#CCCCCC", lwd = 1.5) )) |> fp_set_style(box = c("royalblue", "gold"), line = c("darkblue", "orange"), summary = c("darkblue", "red")) # An example of how the exponential works data.frame(coef = c(2.45, 0.43), low = c(1.5, 0.25), high = c(4, 0.75), boxsize = c(0.25, 0.25), variables = c("Variable A", "Variable B")) |> forestplot(labeltext = c(variables, coef), mean = coef, lower = low, upper = high, boxsize = boxsize, zero = 1, xlog = TRUE) |> fp_set_style(lines = "red", box = "darkred") |> fp_add_header(coef = "HR" |> fp_txt_plain() |> fp_align_center(), variables = "Measurements") # An example using style forestplot(labeltext = cbind(Author = c("Smith et al", "Smooth et al", "Al et al")), mean = cbind(1:3, 1.5:3.5), lower = cbind(0:2, 0.5:2.5), upper = cbind(4:6, 5.5:7.5), is.summary = c(FALSE, FALSE, TRUE), vertices = TRUE) |> fp_set_style(default = gpar(lineend = "square", linejoin = "mitre", lwd = 3, col = "pink"), box = gpar(fill = "black", col = "red"), # only one parameter lines = list( # as many parameters as CI gpar(lwd = 10), gpar(lwd = 5), gpar(), gpar(), gpar(lwd = 2), gpar(lwd = 1) ), summary = list( # as many parameters as band per label gpar(fill = "violet", col = "gray", lwd = 10), gpar(fill = "orange", col = "gray", lwd = 10) )) par(ask = ask) # See vignette for a more detailed description # vignette("forestplot", package="forestplot")
Adds a line to the graph, defaults to horizontal. Lines with prefix v_
will be vertical, no prefix or h_
will be horizontal.
If argument is TRUE
or just empty: A line will be added based upon the is.summary
rows. If the first line is a summary it
will choose the last non-summary row.
fp_add_lines(x, ...)
fp_add_lines(x, ...)
x |
The forestplot object |
... |
A set of arguments. Can either be |
If you provide the argument as a number it will add the line to that particular line. 1 corresponds to the
top row and the max row is num_rows + 1
. If the argument is TRUE
it will default to a standard line.
A string will default to the color of that string. If you provide a grid::gpar element it will style
the line according to the gpar object
. Apart from allowing standard gpar
line descriptions,
lty
, lwd
, col
, and more you can also specify gpar(columns = c(1:3, 5))
if you for instance want
the line to skip a column.
If you want to add mix vertical and horizontal lines you can prefix the lines with h_
and v_
, e.g. v_2
for the
second column.
The foresplot object with the styles
Other graph modifiers:
fp_decorate_graph()
,
fp_insert_row()
,
fp_set_style()
,
fp_set_zebra_style()
Other forestplot functions:
forestplot()
,
fpColors()
,
fpDrawNormalCI()
,
fpLegend()
,
fpShapesGp()
,
fp_decorate_graph()
,
fp_insert_row()
,
fp_set_style()
,
fp_set_zebra_style()
base_data <- tibble::tibble(mean = c(0.578, 0.165, 0.246, 0.700, 0.348, 0.139, 1.017), lower = c(0.372, 0.018, 0.072, 0.333, 0.083, 0.016, 0.365), upper = c(0.898, 1.517, 0.833, 1.474, 1.455, 1.209, 2.831), study = c("Auckland", "Block", "Doran", "Gamsu", "Morrison", "Papageorgiou", "Tauesch"), deaths_steroid = c("36", "1", "4", "14", "3", "1", "8"), deaths_placebo = c("60", "5", "11", "20", "7", "7", "10"), OR = c("0.58", "0.16", "0.25", "0.70", "0.35", "0.14", "1.02")) base_data |> forestplot(labeltext = c(study, deaths_steroid, deaths_placebo, OR), clip = c(0.1, 2.5), xlog = TRUE) |> fp_add_header(study = c("", "Study"), deaths_steroid = c("Deaths", "(steroid)"), deaths_placebo = c("Deaths", "(placebo)"), OR = c("", "OR")) |> fp_set_style(box = "royalblue", line = "darkblue") |> fp_add_lines("steelblue") base_data |> forestplot(labeltext = c(study, deaths_steroid, deaths_placebo, OR), clip = c(0.1, 2.5), xlog = TRUE) |> fp_add_header(study = c("", "Study"), deaths_steroid = c("Deaths", "(steroid)"), deaths_placebo = c("Deaths", "(placebo)"), OR = c("", "OR")) |> fp_set_style(box = "royalblue", line = "darkblue") |> # Add top line fp_add_lines(h_3 = "darkred") |> # Add surrounding box with fancy syntax fp_add_lines(h_5 = gpar(col = "steelblue", columns = 1:4, lty = 2), h_7 = gpar(col = "steelblue", columns = 1:4, lty = 2), v_1 = gpar(col = "steelblue", rows = 5:6, lty = 3, lty = 2), v_5 = gpar(col = "steelblue", rows = 5:6, lty = 3, lty = 2))
base_data <- tibble::tibble(mean = c(0.578, 0.165, 0.246, 0.700, 0.348, 0.139, 1.017), lower = c(0.372, 0.018, 0.072, 0.333, 0.083, 0.016, 0.365), upper = c(0.898, 1.517, 0.833, 1.474, 1.455, 1.209, 2.831), study = c("Auckland", "Block", "Doran", "Gamsu", "Morrison", "Papageorgiou", "Tauesch"), deaths_steroid = c("36", "1", "4", "14", "3", "1", "8"), deaths_placebo = c("60", "5", "11", "20", "7", "7", "10"), OR = c("0.58", "0.16", "0.25", "0.70", "0.35", "0.14", "1.02")) base_data |> forestplot(labeltext = c(study, deaths_steroid, deaths_placebo, OR), clip = c(0.1, 2.5), xlog = TRUE) |> fp_add_header(study = c("", "Study"), deaths_steroid = c("Deaths", "(steroid)"), deaths_placebo = c("Deaths", "(placebo)"), OR = c("", "OR")) |> fp_set_style(box = "royalblue", line = "darkblue") |> fp_add_lines("steelblue") base_data |> forestplot(labeltext = c(study, deaths_steroid, deaths_placebo, OR), clip = c(0.1, 2.5), xlog = TRUE) |> fp_add_header(study = c("", "Study"), deaths_steroid = c("Deaths", "(steroid)"), deaths_placebo = c("Deaths", "(placebo)"), OR = c("", "OR")) |> fp_set_style(box = "royalblue", line = "darkblue") |> # Add top line fp_add_lines(h_3 = "darkred") |> # Add surrounding box with fancy syntax fp_add_lines(h_5 = gpar(col = "steelblue", columns = 1:4, lty = 2), h_7 = gpar(col = "steelblue", columns = 1:4, lty = 2), v_1 = gpar(col = "steelblue", rows = 5:6, lty = 3, lty = 2), v_5 = gpar(col = "steelblue", rows = 5:6, lty = 3, lty = 2))
Decorate the graph
fp_decorate_graph( x, box = NULL, right_bottom_txt = NULL, left_bottom_txt = NULL, right_top_txt = NULL, left_top_txt = NULL, grid = NULL, graph.pos = NULL )
fp_decorate_graph( x, box = NULL, right_bottom_txt = NULL, left_bottom_txt = NULL, right_top_txt = NULL, left_top_txt = NULL, grid = NULL, graph.pos = NULL )
x |
The forestplot object |
box |
Decorate the graph by framing it in a box. If provided |
right_bottom_txt |
Text to appear at the right bottom of the graph. Can be decorated fp_txt_* functions. |
left_bottom_txt |
Text to appear at the left bottom of the graph. Can be decorated fp_txt_* functions. |
right_top_txt |
Text to appear at the right top of the graph. Can be decorated fp_txt_* functions. |
left_top_txt |
Text to appear at the left top of the graph. Can be decorated fp_txt_* functions. |
grid |
If you want a discrete gray dashed grid at the level of the
ticks you can set this parameter to |
graph.pos |
The position of the graph element within the table of text. The
position can be |
The forestplot object with the extended decoration
Other graph modifiers:
fp_add_lines()
,
fp_insert_row()
,
fp_set_style()
,
fp_set_zebra_style()
Other forestplot functions:
forestplot()
,
fpColors()
,
fpDrawNormalCI()
,
fpLegend()
,
fpShapesGp()
,
fp_add_lines()
,
fp_insert_row()
,
fp_set_style()
,
fp_set_zebra_style()
base_data <- tibble::tibble(mean = c(0.578, 0.165, 0.246, 0.700, 0.348, 0.139, 1.017), lower = c(0.372, 0.018, 0.072, 0.333, 0.083, 0.016, 0.365), upper = c(0.898, 1.517, 0.833, 1.474, 1.455, 1.209, 2.831), study = c("Auckland", "Block", "Doran", "Gamsu", "Morrison", "Papageorgiou", "Tauesch"), deaths_steroid = c("36", "1", "4", "14", "3", "1", "8"), deaths_placebo = c("60", "5", "11", "20", "7", "7", "10"), OR = c("0.58", "0.16", "0.25", "0.70", "0.35", "0.14", "1.02")) base_data |> forestplot(labeltext = c(study, deaths_steroid, deaths_placebo, OR), clip = c(0.1, 2.5), xlog = TRUE) |> fp_add_header(study = c("", "Study"), deaths_steroid = c("Deaths", "(steroid)"), deaths_placebo = c("Deaths", "(placebo)"), OR = c("", "OR")) |> fp_set_style(box = "royalblue", line = "darkblue", summary = gpar(fill = "royalblue", clr = "black"), txt_gp = fpTxtGp(label = gpar(fontfamily = "mono"))) |> fp_decorate_graph(box = "lightgray", right_bottom_txt = fp_txt_gp("RB", gp = gpar(cex = .5)), left_bottom_txt = fp_txt_gp("LB", gp = gpar(cex = .5)), right_top_txt = "RT", left_top_txt = "LT")
base_data <- tibble::tibble(mean = c(0.578, 0.165, 0.246, 0.700, 0.348, 0.139, 1.017), lower = c(0.372, 0.018, 0.072, 0.333, 0.083, 0.016, 0.365), upper = c(0.898, 1.517, 0.833, 1.474, 1.455, 1.209, 2.831), study = c("Auckland", "Block", "Doran", "Gamsu", "Morrison", "Papageorgiou", "Tauesch"), deaths_steroid = c("36", "1", "4", "14", "3", "1", "8"), deaths_placebo = c("60", "5", "11", "20", "7", "7", "10"), OR = c("0.58", "0.16", "0.25", "0.70", "0.35", "0.14", "1.02")) base_data |> forestplot(labeltext = c(study, deaths_steroid, deaths_placebo, OR), clip = c(0.1, 2.5), xlog = TRUE) |> fp_add_header(study = c("", "Study"), deaths_steroid = c("Deaths", "(steroid)"), deaths_placebo = c("Deaths", "(placebo)"), OR = c("", "OR")) |> fp_set_style(box = "royalblue", line = "darkblue", summary = gpar(fill = "royalblue", clr = "black"), txt_gp = fpTxtGp(label = gpar(fontfamily = "mono"))) |> fp_decorate_graph(box = "lightgray", right_bottom_txt = fp_txt_gp("RB", gp = gpar(cex = .5)), left_bottom_txt = fp_txt_gp("LB", gp = gpar(cex = .5)), right_top_txt = "RT", left_top_txt = "LT")
These functions are used for inserting or appending a row into a forestplot object. Can be used for inputting multiple rows. Just make sure that all elements are of equal length.
fp_insert_row( x, ..., mean = NULL, lower = NULL, upper = NULL, position = 1, is.summary = FALSE, boxsize = NA ) fp_add_header(x, ..., position = 1, is.summary = TRUE) fp_append_row(x, ..., position = "last", is.summary = FALSE)
fp_insert_row( x, ..., mean = NULL, lower = NULL, upper = NULL, position = 1, is.summary = FALSE, boxsize = NA ) fp_add_header(x, ..., position = 1, is.summary = TRUE) fp_append_row(x, ..., position = "last", is.summary = FALSE)
x |
The forestplot object |
... |
Either named arguments that correspond to the original column names or unnamed arguments that will map in appearing order. |
mean |
Either a mean or all the values if three columns (mean, lower, upper) |
lower |
A vector or matrix with the lower confidence interval |
upper |
A vector or matrix with the upper confidence interval |
position |
The row position to input at. Either a row number or "last". |
is.summary |
Whether the row is a summary. |
boxsize |
The box size for the drawn estimate line |
The foresplot object with the added rows
Other graph modifiers:
fp_add_lines()
,
fp_decorate_graph()
,
fp_set_style()
,
fp_set_zebra_style()
Other forestplot functions:
forestplot()
,
fpColors()
,
fpDrawNormalCI()
,
fpLegend()
,
fpShapesGp()
,
fp_add_lines()
,
fp_decorate_graph()
,
fp_set_style()
,
fp_set_zebra_style()
base_data <- tibble::tibble(mean = c(0.578, 0.165, 0.246, 0.700, 0.348, 0.139, 1.017), lower = c(0.372, 0.018, 0.072, 0.333, 0.083, 0.016, 0.365), upper = c(0.898, 1.517, 0.833, 1.474, 1.455, 1.209, 2.831), study = c("Auckland", "Block", "Doran", "Gamsu", "Morrison", "Papageorgiou", "Tauesch"), deaths_steroid = c("36", "1", "4", "14", "3", "1", "8"), deaths_placebo = c("60", "5", "11", "20", "7", "7", "10"), OR = c("0.58", "0.16", "0.25", "0.70", "0.35", "0.14", "1.02")) base_data |> forestplot(labeltext = c(study, deaths_steroid, deaths_placebo, OR), clip = c(0.1, 2.5), xlog = TRUE) |> fp_add_header(study = c("", "Study"), deaths_steroid = c("Deaths", "(steroid)"), deaths_placebo = c("Deaths", "(placebo)"), OR = c("", "OR")) |> fp_append_row(mean = 0.531, lower = 0.386, upper = 0.731, study = "Summary", OR = "0.53", is.summary = TRUE)
base_data <- tibble::tibble(mean = c(0.578, 0.165, 0.246, 0.700, 0.348, 0.139, 1.017), lower = c(0.372, 0.018, 0.072, 0.333, 0.083, 0.016, 0.365), upper = c(0.898, 1.517, 0.833, 1.474, 1.455, 1.209, 2.831), study = c("Auckland", "Block", "Doran", "Gamsu", "Morrison", "Papageorgiou", "Tauesch"), deaths_steroid = c("36", "1", "4", "14", "3", "1", "8"), deaths_placebo = c("60", "5", "11", "20", "7", "7", "10"), OR = c("0.58", "0.16", "0.25", "0.70", "0.35", "0.14", "1.02")) base_data |> forestplot(labeltext = c(study, deaths_steroid, deaths_placebo, OR), clip = c(0.1, 2.5), xlog = TRUE) |> fp_add_header(study = c("", "Study"), deaths_steroid = c("Deaths", "(steroid)"), deaths_placebo = c("Deaths", "(placebo)"), OR = c("", "OR")) |> fp_append_row(mean = 0.531, lower = 0.386, upper = 0.731, study = "Summary", OR = "0.53", is.summary = TRUE)
Sets the output style associated with the foresplot
fp_set_style( x, default = NULL, box = NULL, lines = NULL, vertices = NULL, summary = NULL, zero = NULL, axes = NULL, hrz_lines = NULL, grid = NULL, txt_gp = NULL, align = NULL )
fp_set_style( x, default = NULL, box = NULL, lines = NULL, vertices = NULL, summary = NULL, zero = NULL, axes = NULL, hrz_lines = NULL, grid = NULL, txt_gp = NULL, align = NULL )
x |
The forestplot object |
default |
A fallback grid::gpar for all unspecified attributes.
If set to NULL then it defaults to legacy parameters, including
the |
box |
The graphical parameters ( |
lines |
The graphical parameters ( |
vertices |
The graphical parameters ( |
summary |
The graphical parameters ( |
zero |
The graphical parameters ( |
axes |
The graphical parameters ( |
hrz_lines |
The graphical parameters ( |
grid |
The graphical parameters ( |
txt_gp |
Set the fonts etc for all text elements. See |
align |
Vector giving alignment (l,r,c) for the table columns |
The foresplot object with the styles
Other graph modifiers:
fp_add_lines()
,
fp_decorate_graph()
,
fp_insert_row()
,
fp_set_zebra_style()
Other forestplot functions:
forestplot()
,
fpColors()
,
fpDrawNormalCI()
,
fpLegend()
,
fpShapesGp()
,
fp_add_lines()
,
fp_decorate_graph()
,
fp_insert_row()
,
fp_set_zebra_style()
base_data <- tibble::tibble(mean = c(0.578, 0.165, 0.246, 0.700, 0.348, 0.139, 1.017), lower = c(0.372, 0.018, 0.072, 0.333, 0.083, 0.016, 0.365), upper = c(0.898, 1.517, 0.833, 1.474, 1.455, 1.209, 2.831), study = c("Auckland", "Block", "Doran", "Gamsu", "Morrison", "Papageorgiou", "Tauesch"), deaths_steroid = c("36", "1", "4", "14", "3", "1", "8"), deaths_placebo = c("60", "5", "11", "20", "7", "7", "10"), OR = c("0.58", "0.16", "0.25", "0.70", "0.35", "0.14", "1.02")) base_data |> forestplot(labeltext = c(study, deaths_steroid, deaths_placebo, OR), clip = c(0.1, 2.5), xlog = TRUE) |> fp_add_header(study = c("", "Study"), deaths_steroid = c("Deaths", "(steroid)"), deaths_placebo = c("Deaths", "(placebo)"), OR = c("", "OR")) |> fp_set_style(box = "royalblue", line = "darkblue", summary = gpar(fill = "royalblue", clr = "black"), txt_gp = fpTxtGp(label = gpar(fontfamily = "mono")))
base_data <- tibble::tibble(mean = c(0.578, 0.165, 0.246, 0.700, 0.348, 0.139, 1.017), lower = c(0.372, 0.018, 0.072, 0.333, 0.083, 0.016, 0.365), upper = c(0.898, 1.517, 0.833, 1.474, 1.455, 1.209, 2.831), study = c("Auckland", "Block", "Doran", "Gamsu", "Morrison", "Papageorgiou", "Tauesch"), deaths_steroid = c("36", "1", "4", "14", "3", "1", "8"), deaths_placebo = c("60", "5", "11", "20", "7", "7", "10"), OR = c("0.58", "0.16", "0.25", "0.70", "0.35", "0.14", "1.02")) base_data |> forestplot(labeltext = c(study, deaths_steroid, deaths_placebo, OR), clip = c(0.1, 2.5), xlog = TRUE) |> fp_add_header(study = c("", "Study"), deaths_steroid = c("Deaths", "(steroid)"), deaths_placebo = c("Deaths", "(placebo)"), OR = c("", "OR")) |> fp_set_style(box = "royalblue", line = "darkblue", summary = gpar(fill = "royalblue", clr = "black"), txt_gp = fpTxtGp(label = gpar(fontfamily = "mono")))
Decorate the plot with a zebra pattern
fp_set_zebra_style(x, ..., ignore_subheaders = FALSE)
fp_set_zebra_style(x, ..., ignore_subheaders = FALSE)
x |
The forestplot object |
... |
The styles for each row |
ignore_subheaders |
The zebra will automatically restart at sub-headers, i.e. when there is a summary row that doesn't have any values. |
The forestplot object with the zebra style
Other graph modifiers:
fp_add_lines()
,
fp_decorate_graph()
,
fp_insert_row()
,
fp_set_style()
Other forestplot functions:
forestplot()
,
fpColors()
,
fpDrawNormalCI()
,
fpLegend()
,
fpShapesGp()
,
fp_add_lines()
,
fp_decorate_graph()
,
fp_insert_row()
,
fp_set_style()
base_data <- tibble::tibble(mean = c(0.578, 0.165, 0.246, 0.700, 0.348, 0.139, 1.017), lower = c(0.372, 0.018, 0.072, 0.333, 0.083, 0.016, 0.365), upper = c(0.898, 1.517, 0.833, 1.474, 1.455, 1.209, 2.831), study = c("Auckland", "Block", "Doran", "Gamsu", "Morrison", "Papageorgiou", "Tauesch"), deaths_steroid = c("36", "1", "4", "14", "3", "1", "8"), deaths_placebo = c("60", "5", "11", "20", "7", "7", "10"), OR = c("0.58", "0.16", "0.25", "0.70", "0.35", "0.14", "1.02")) base_data |> forestplot(labeltext = c(study, deaths_steroid, deaths_placebo, OR), clip = c(0.1, 2.5), xlog = TRUE) |> fp_add_header(study = c("", "Study"), deaths_steroid = c("Deaths", "(steroid)"), deaths_placebo = c("Deaths", "(placebo)"), OR = c("", "OR")) |> fp_set_style(box = "royalblue", line = "darkblue", summary = gpar(fill = "royalblue", clr = "black")) |> fp_set_zebra_style("#EFEFEF")
base_data <- tibble::tibble(mean = c(0.578, 0.165, 0.246, 0.700, 0.348, 0.139, 1.017), lower = c(0.372, 0.018, 0.072, 0.333, 0.083, 0.016, 0.365), upper = c(0.898, 1.517, 0.833, 1.474, 1.455, 1.209, 2.831), study = c("Auckland", "Block", "Doran", "Gamsu", "Morrison", "Papageorgiou", "Tauesch"), deaths_steroid = c("36", "1", "4", "14", "3", "1", "8"), deaths_placebo = c("60", "5", "11", "20", "7", "7", "10"), OR = c("0.58", "0.16", "0.25", "0.70", "0.35", "0.14", "1.02")) base_data |> forestplot(labeltext = c(study, deaths_steroid, deaths_placebo, OR), clip = c(0.1, 2.5), xlog = TRUE) |> fp_add_header(study = c("", "Study"), deaths_steroid = c("Deaths", "(steroid)"), deaths_placebo = c("Deaths", "(placebo)"), OR = c("", "OR")) |> fp_set_style(box = "royalblue", line = "darkblue", summary = gpar(fill = "royalblue", clr = "black")) |> fp_set_zebra_style("#EFEFEF")
This is a collection of functions to allow styling of text
fp_txt_italic(txt) fp_txt_bold(txt) fp_txt_plain(txt) fp_txt_gp(txt, gp) fp_align_left(txt) fp_align_center(txt) fp_align_right(txt)
fp_txt_italic(txt) fp_txt_bold(txt) fp_txt_plain(txt) fp_txt_gp(txt, gp) fp_align_left(txt) fp_align_center(txt) fp_align_right(txt)
txt |
The text to styl |
gp |
A |
A list of txt with style attributes
fp_txt_italic("Italic text")
fp_txt_italic("Italic text")
This function encapsulates all the colors that are used in the
forestplot
function. As there are plenty of color
options this function gathers them all in one place.
fpColors( all.elements, box = "black", lines = "gray", summary = "black", zero = "lightgray", text = "black", axes = "black", hrz_lines = "black", vrtcl_lines = "lightgray" )
fpColors( all.elements, box = "black", lines = "gray", summary = "black", zero = "lightgray", text = "black", axes = "black", hrz_lines = "black", vrtcl_lines = "lightgray" )
all.elements |
A color for all the elements. If set to NULL then it's set to the par("fg") color |
box |
The color of the box indicating the estimate |
lines |
The color of the confidence lines |
summary |
The color of the summary |
zero |
The color of the zero line |
text |
The color of the text |
axes |
The color of the x-axis at the bottom |
hrz_lines |
The color of the horizontal lines |
vrtcl_lines |
The color of the vertical lines |
Further customization of non-text elements can be performed with
fpShapesGp
passed as shapes_gp
parameter to
forestplot
. The fpColors
function is kept for
backwards compatibility.
If you have several values per row in a forestplot you can set
a color to a vector where the first value represents the first
line/box, second the second line/box etc. The vectors are only
valid for the box
& lines
options.
This function is a copy of the meta.colors
function in the rmeta package.
A list with key elements
Max Gordon, Thomas Lumley
Other forestplot functions:
forestplot()
,
fpDrawNormalCI()
,
fpLegend()
,
fpShapesGp()
,
fp_add_lines()
,
fp_decorate_graph()
,
fp_insert_row()
,
fp_set_style()
,
fp_set_zebra_style()
ask <- par(ask = TRUE) # An example of how the exponential works test_data <- data.frame( coef = c(2.45, 0.43), low = c(1.5, 0.25), high = c(4, 0.75), boxsize = c(0.5, 0.5) ) row_names <- cbind( c("Name", "Variable A", "Variable B"), c("HR", test_data$coef) ) test_data <- rbind(rep(NA, 3), test_data) forestplot( labeltext = row_names, test_data[, c("coef", "low", "high")], is.summary = c(TRUE, FALSE, FALSE), boxsize = test_data$boxsize, zero = 1, xlog = TRUE, col = fpColors(lines = "#990000", box = "#660000", zero = "darkblue"), new_page = TRUE ) par(ask = ask)
ask <- par(ask = TRUE) # An example of how the exponential works test_data <- data.frame( coef = c(2.45, 0.43), low = c(1.5, 0.25), high = c(4, 0.75), boxsize = c(0.5, 0.5) ) row_names <- cbind( c("Name", "Variable A", "Variable B"), c("HR", test_data$coef) ) test_data <- rbind(rep(NA, 3), test_data) forestplot( labeltext = row_names, test_data[, c("coef", "low", "high")], is.summary = c(TRUE, FALSE, FALSE), boxsize = test_data$boxsize, zero = 1, xlog = TRUE, col = fpColors(lines = "#990000", box = "#660000", zero = "darkblue"), new_page = TRUE ) par(ask = ask)
A function that is used to draw the different
confidence intervals for the non-summary lines.
Use the fpDrawNormalCI
function as a
template if you want to make your own funky line + marker.
fpDrawNormalCI( lower_limit, estimate, upper_limit, size, y.offset = 0.5, clr.line, clr.marker, lwd, lty = 1, vertices, vertices.height = 0.1, shapes_gp = fpShapesGp(), shape_coordinates = structure(c(1, 1), max.coords = c(1, 1)), ... ) fpDrawDiamondCI( lower_limit, estimate, upper_limit, size, y.offset = 0.5, clr.line, clr.marker, lwd, lty = 1, vertices, vertices.height = 0.1, shapes_gp = fpShapesGp(), shape_coordinates = structure(c(1, 1), max.coords = c(1, 1)), ... ) fpDrawCircleCI( lower_limit, estimate, upper_limit, size, y.offset = 0.5, clr.line, clr.marker, lwd, lty = 1, vertices, vertices.height = 0.1, shapes_gp = fpShapesGp(), shape_coordinates = structure(c(1, 1), max.coords = c(1, 1)), ... ) fpDrawPointCI( lower_limit, estimate, upper_limit, size, y.offset = 0.5, clr.line, clr.marker, lwd, lty = 1, vertices, vertices.height = 0.1, pch = 1, shapes_gp = fpShapesGp(), shape_coordinates = structure(c(1, 1), max.coords = c(1, 1)), ... ) fpDrawSummaryCI( lower_limit, estimate, upper_limit, size, col, y.offset = 0.5, shapes_gp = fpShapesGp(), shape_coordinates = structure(c(1, 1), max.coords = c(1, 1)), ... ) fpDrawBarCI( lower_limit, estimate, upper_limit, size, col, y.offset = 0.5, shapes_gp = fpShapesGp(), shape_coordinates = structure(c(1, 1), max.coords = c(1, 1)), ... )
fpDrawNormalCI( lower_limit, estimate, upper_limit, size, y.offset = 0.5, clr.line, clr.marker, lwd, lty = 1, vertices, vertices.height = 0.1, shapes_gp = fpShapesGp(), shape_coordinates = structure(c(1, 1), max.coords = c(1, 1)), ... ) fpDrawDiamondCI( lower_limit, estimate, upper_limit, size, y.offset = 0.5, clr.line, clr.marker, lwd, lty = 1, vertices, vertices.height = 0.1, shapes_gp = fpShapesGp(), shape_coordinates = structure(c(1, 1), max.coords = c(1, 1)), ... ) fpDrawCircleCI( lower_limit, estimate, upper_limit, size, y.offset = 0.5, clr.line, clr.marker, lwd, lty = 1, vertices, vertices.height = 0.1, shapes_gp = fpShapesGp(), shape_coordinates = structure(c(1, 1), max.coords = c(1, 1)), ... ) fpDrawPointCI( lower_limit, estimate, upper_limit, size, y.offset = 0.5, clr.line, clr.marker, lwd, lty = 1, vertices, vertices.height = 0.1, pch = 1, shapes_gp = fpShapesGp(), shape_coordinates = structure(c(1, 1), max.coords = c(1, 1)), ... ) fpDrawSummaryCI( lower_limit, estimate, upper_limit, size, col, y.offset = 0.5, shapes_gp = fpShapesGp(), shape_coordinates = structure(c(1, 1), max.coords = c(1, 1)), ... ) fpDrawBarCI( lower_limit, estimate, upper_limit, size, col, y.offset = 0.5, shapes_gp = fpShapesGp(), shape_coordinates = structure(c(1, 1), max.coords = c(1, 1)), ... )
lower_limit |
The lower limit of the confidence line.
A native numeric variable that can actually be
outside the boundaries. If you want to see if it
is outside then convert it to 'npc' and see if the
value ends up more than 1 or less than 0. Here's how
you do the conversion:
|
estimate |
The estimate indicating the placement
of the actual box. Note, this can also be outside bounds
and is provided in a numeric format the same way as the
|
upper_limit |
The upper limit of the confidence line. See lower_limit for details. |
size |
The actual size of the box/diamond/marker. This provided in the 'snpc' format to generate a perfect marker. Although you can provide it alternative units as well, this is useful for the legends to work nicely. |
y.offset |
If you have multiple lines they need an offset in the y-direction. |
clr.line |
The color of the line. |
clr.marker |
The color of the estimate marker |
lwd |
Line width, see |
lty |
Line type, see |
vertices |
Set this to TRUE if you want the ends of the confidence intervals to be shaped as a T. This is set default to TRUE if you have any other line type than 1 since there is a risk of a dash occurring at the very end, i.e. showing incorrectly narrow confidence interval. |
vertices.height |
The height hoft the vertices. Defaults to npc units corresponding to 10% of the row height. |
shapes_gp |
A set of graphical parameters of class |
shape_coordinates |
A vector of length 2 the label (first item of the vector) and the band (second item of the vector) of the confidence interval. This is used together with shapes_gp to retrieve graphical parameters for that item. |
... |
Allows additional parameters for sibling functions |
pch |
Type of point see |
col |
The color of the summary object |
void
The function outputs the line using grid compatible
functions and does not return anything.
Max Gordon, Thomas Lumley
Other forestplot functions:
forestplot()
,
fpColors()
,
fpLegend()
,
fpShapesGp()
,
fp_add_lines()
,
fp_decorate_graph()
,
fp_insert_row()
,
fp_set_style()
,
fp_set_zebra_style()
ask <- par(ask = TRUE) test_data <- data.frame( coef1 = c(1, 1.59, 1.3, 1.24), coef2 = c(1, 1.7, 1.4, 1.04) ) test_data$low1 <- test_data$coef1 - 1.96 * c(0, .2, .1, .15) test_data$high1 <- test_data$coef1 + 1.96 * c(0, .2, .1, .15) test_data$low2 <- test_data$coef2 - 1.96 * c(0, .1, .15, .2) test_data$high2 <- test_data$coef2 + 1.96 * c(0, .1, .15, .2) col_no <- grep("coef", colnames(test_data)) row_names <- list( list("Category 1", "Category 2", "Category 3", expression(Category >= 4)), list( "ref", substitute( expression(bar(x) == val), list(val = round(rowMeans(test_data[2, col_no]), 2)) ), substitute( expression(bar(x) == val), list(val = round(rowMeans(test_data[3, col_no]), 2)) ), substitute( expression(bar(x) == val), list(val = round(rowMeans(test_data[4, col_no]), 2)) ) ) ) coef <- with(test_data, cbind(coef1, coef2)) low <- with(test_data, cbind(low1, low2)) high <- with(test_data, cbind(high1, high2)) # Change all to diamonds forestplot(row_names, coef, low, high, fn.ci_norm = fpDrawDiamondCI, title = "Cool study", zero = 1, boxsize = 0.25, col = fpColors( box = c("royalblue", "gold"), line = c("darkblue", "orange"), summary = c("darkblue", "red") ), xlab = "The estimates", new_page = TRUE, legend = c("Treatment", "Placebo"), legend_args = fpLegend( title = "Group", pos = list("topright", inset = .1), r = unit(.1, "snpc"), gp = gpar(col = "#CCCCCC", lwd = 1.5) ) ) # Change first to diamonds forestplot(row_names, coef, low, high, fn.ci_norm = c( "fpDrawDiamondCI", rep("fpDrawNormalCI", times = nrow(coef) - 1 ) ), title = "Cool study", zero = 1, boxsize = 0.25, col = fpColors( box = c("royalblue", "gold"), line = c("darkblue", "orange"), summary = c("darkblue", "red") ), xlab = "The estimates", new_page = TRUE, legend = c("Treatment", "Placebo"), legend_args = fpLegend( title = "Group", pos = list("topright", inset = .1), r = unit(.1, "snpc"), gp = gpar(col = "#CCCCCC", lwd = 1.5) ) ) # You can also use a list with the actual functions # as long as it is formatted [[row]][[column]] # Note: if you have a non-square input then # the software will reformat [[col]][[row]] # to [[row]][[col]] forestplot(row_names, coef, low, high, fn.ci_norm = list( list(fpDrawDiamondCI, fpDrawCircleCI), list(fpDrawNormalCI, fpDrawNormalCI), list(fpDrawNormalCI, fpDrawCircleCI), list(fpDrawNormalCI, fpDrawNormalCI) ), title = "Cool study", zero = 1, boxsize = 0.25, col = fpColors( box = c("royalblue", "gold"), line = c("darkblue", "orange"), summary = c("darkblue", "red") ), xlab = "The estimates", new_page = TRUE, legend = c("Treatment", "Placebo"), legend_args = fpLegend( title = "Group", pos = list("topright", inset = .1), r = unit(.1, "snpc"), gp = gpar(col = "#CCCCCC", lwd = 1.5) ) ) par(ask = ask)
ask <- par(ask = TRUE) test_data <- data.frame( coef1 = c(1, 1.59, 1.3, 1.24), coef2 = c(1, 1.7, 1.4, 1.04) ) test_data$low1 <- test_data$coef1 - 1.96 * c(0, .2, .1, .15) test_data$high1 <- test_data$coef1 + 1.96 * c(0, .2, .1, .15) test_data$low2 <- test_data$coef2 - 1.96 * c(0, .1, .15, .2) test_data$high2 <- test_data$coef2 + 1.96 * c(0, .1, .15, .2) col_no <- grep("coef", colnames(test_data)) row_names <- list( list("Category 1", "Category 2", "Category 3", expression(Category >= 4)), list( "ref", substitute( expression(bar(x) == val), list(val = round(rowMeans(test_data[2, col_no]), 2)) ), substitute( expression(bar(x) == val), list(val = round(rowMeans(test_data[3, col_no]), 2)) ), substitute( expression(bar(x) == val), list(val = round(rowMeans(test_data[4, col_no]), 2)) ) ) ) coef <- with(test_data, cbind(coef1, coef2)) low <- with(test_data, cbind(low1, low2)) high <- with(test_data, cbind(high1, high2)) # Change all to diamonds forestplot(row_names, coef, low, high, fn.ci_norm = fpDrawDiamondCI, title = "Cool study", zero = 1, boxsize = 0.25, col = fpColors( box = c("royalblue", "gold"), line = c("darkblue", "orange"), summary = c("darkblue", "red") ), xlab = "The estimates", new_page = TRUE, legend = c("Treatment", "Placebo"), legend_args = fpLegend( title = "Group", pos = list("topright", inset = .1), r = unit(.1, "snpc"), gp = gpar(col = "#CCCCCC", lwd = 1.5) ) ) # Change first to diamonds forestplot(row_names, coef, low, high, fn.ci_norm = c( "fpDrawDiamondCI", rep("fpDrawNormalCI", times = nrow(coef) - 1 ) ), title = "Cool study", zero = 1, boxsize = 0.25, col = fpColors( box = c("royalblue", "gold"), line = c("darkblue", "orange"), summary = c("darkblue", "red") ), xlab = "The estimates", new_page = TRUE, legend = c("Treatment", "Placebo"), legend_args = fpLegend( title = "Group", pos = list("topright", inset = .1), r = unit(.1, "snpc"), gp = gpar(col = "#CCCCCC", lwd = 1.5) ) ) # You can also use a list with the actual functions # as long as it is formatted [[row]][[column]] # Note: if you have a non-square input then # the software will reformat [[col]][[row]] # to [[row]][[col]] forestplot(row_names, coef, low, high, fn.ci_norm = list( list(fpDrawDiamondCI, fpDrawCircleCI), list(fpDrawNormalCI, fpDrawNormalCI), list(fpDrawNormalCI, fpDrawCircleCI), list(fpDrawNormalCI, fpDrawNormalCI) ), title = "Cool study", zero = 1, boxsize = 0.25, col = fpColors( box = c("royalblue", "gold"), line = c("darkblue", "orange"), summary = c("darkblue", "red") ), xlab = "The estimates", new_page = TRUE, legend = c("Treatment", "Placebo"), legend_args = fpLegend( title = "Group", pos = list("topright", inset = .1), r = unit(.1, "snpc"), gp = gpar(col = "#CCCCCC", lwd = 1.5) ) ) par(ask = ask)
This function encapsulates all the legend options that are used in the
forestplot
function. This is in order to limit the crowding
among the arguments for the forestplot
call.
fpLegend( pos = "top", gp = NULL, r = unit(0, "snpc"), padding = unit(ifelse(!is.null(gp), 3, 0), "mm"), title = NULL )
fpLegend( pos = "top", gp = NULL, r = unit(0, "snpc"), padding = unit(ifelse(!is.null(gp), 3, 0), "mm"), title = NULL )
pos |
The position of the legend, either at the "top" or the "right" unless
positioned inside the plot. If you want the legend to be positioned inside the plot
then you have to provide a list with the same x & y qualities as |
gp |
The |
r |
The box can have rounded edges, check out |
padding |
The padding for the legend box, only used if box is drawn. This is the distance from the border to the text/boxes of the legend. |
title |
The title of the legend if any |
list
Returns a list with all the elements
Other forestplot functions:
forestplot()
,
fpColors()
,
fpDrawNormalCI()
,
fpShapesGp()
,
fp_add_lines()
,
fp_decorate_graph()
,
fp_insert_row()
,
fp_set_style()
,
fp_set_zebra_style()
forestplot()
This function encapsulates all the non-text elements that are used in the
forestplot()
function. As there are plenty of shapes
options this function gathers them all in one place.
fpShapesGp( default = NULL, box = NULL, lines = NULL, vertices = NULL, summary = NULL, zero = NULL, axes = NULL, hrz_lines = NULL, vrtcl_lines = NULL, grid = NULL )
fpShapesGp( default = NULL, box = NULL, lines = NULL, vertices = NULL, summary = NULL, zero = NULL, axes = NULL, hrz_lines = NULL, vrtcl_lines = NULL, grid = NULL )
default |
A fallback grid::gpar for all unspecified attributes.
If set to NULL then it defaults to legacy parameters, including
the |
box |
The graphical parameters ( |
lines |
The graphical parameters ( |
vertices |
The graphical parameters ( |
summary |
The graphical parameters ( |
zero |
The graphical parameters ( |
axes |
The graphical parameters ( |
hrz_lines |
The graphical parameters ( |
vrtcl_lines |
The graphical parameters ( |
grid |
The graphical parameters ( |
This function obsoletes fpColors()
.
If some, but not all parameters of a shape (e.g. box) are specified in gpar()
such as setting lwd but not line color, the unspecified parameters default
to the ones specified in default
, then, default to legacy parameters
of forestplot
such as col
.
Parameters box
, lines
, vertices
, summary
may be set as list
containing several gpars. The length of the list must either be equal to the number of bands
per label or to the number of bands multiplied by the number of labels, allowing specification
of different styles for different parts of the forest plot.
The parameter grid
can either be a single gpar or a list of gpars with as many
elements as there are lines in the grid (as set by the xticks
or grid
arguments of forestplot)
Parameters zero
, axes
, hrz_lines
must either be NULL or gpar
but cannot be lists of gpars.
list A list with the elements:
default: the gpar for default attributes
box: the gpar or list of gpars of the box/marker
lines: the gpar or list of gpars of the lines
vertices: the gpar or list of gpars of the vertices
summary: the gpar or list of gpars of the summary
zero: the gpar of the zero vertical line
axes: the gpar of the x-axis
hrz_lines: the gpar of the horizontal lines
grid: the gpar or list of gpars of the grid lines
Andre GILLIBERT
Other forestplot functions:
forestplot()
,
fpColors()
,
fpDrawNormalCI()
,
fpLegend()
,
fp_add_lines()
,
fp_decorate_graph()
,
fp_insert_row()
,
fp_set_style()
,
fp_set_zebra_style()
ask <- par(ask = TRUE) # An example of how fpShapesGp works styles <- fpShapesGp( default = gpar(col = "pink", lwd = 2, lineend = "square", linejoin = "mitre"), grid = list( gpar(col = "blue"), gpar(col = "black"), gpar(col = "blue") ), box = list( gpar(fill = "black"), gpar(fill = "blue"), gpar(fill = "black"), gpar(fill = "blue") ), lines = gpar(lty = "dashed"), vertices = gpar(lwd = 5, col = "red") ) forestplot( labeltext = c("Author1", "Author2", "Author3", "Author4"), grid = c(1, 3, 5), mean = 1:4, lower = 0:3, upper = 2:5, shapes_gp = styles ) par(ask = ask)
ask <- par(ask = TRUE) # An example of how fpShapesGp works styles <- fpShapesGp( default = gpar(col = "pink", lwd = 2, lineend = "square", linejoin = "mitre"), grid = list( gpar(col = "blue"), gpar(col = "black"), gpar(col = "blue") ), box = list( gpar(fill = "black"), gpar(fill = "blue"), gpar(fill = "black"), gpar(fill = "blue") ), lines = gpar(lty = "dashed"), vertices = gpar(lwd = 5, col = "red") ) forestplot( labeltext = c("Author1", "Author2", "Author3", "Author4"), grid = c(1, 3, 5), mean = 1:4, lower = 0:3, upper = 2:5, shapes_gp = styles ) par(ask = ask)
This function generates all the gpar()
elements for the different text elements within the graph.
Elements not specified inherit their default settings from the
label
argument.
fpTxtGp(label, summary, xlab, title, ticks, legend, legend.title, cex = 1)
fpTxtGp(label, summary, xlab, title, ticks, legend, legend.title, cex = 1)
label |
The text labels (see details below) |
summary |
The summary labels (see details below) |
xlab |
The xlab text |
title |
The plot title |
ticks |
The ticks associated with the xlab |
legend |
The legend text |
legend.title |
The legend title |
cex |
The font size |
A list of the fpTxtGp
class
label
/summary
You can provide a list
of elements for the label
and summary
in order to specify separate elements. If you
provide a list
in one dimension the gpar
elements are assumed
to follow the columns. If you provide a list
of 2 dimensions the
structure assumes is list[[row]][[column]]
and the number of elements
should correspond to the number of labels for the label
argument, i.e.
without the rows marked as summary elements. The same goes for summary
arguments.
fpTxtGp(label = gpar(fontfamily = "HersheySerif"))
fpTxtGp(label = gpar(fontfamily = "HersheySerif"))
Gets the ticks in a formatted version. This is since I'm not always that fond of just pretty(1:10/5). In exponential form the ticks are determined from the 2-base, meaning that you get an intuitive feeling for when the value is doubled.
getTicks(low, high = low, clip = c(-Inf, Inf), exp = FALSE, digits = 0)
getTicks(low, high = low, clip = c(-Inf, Inf), exp = FALSE, digits = 0)
low |
lower bound, can be a single number or a vector |
high |
upper bound - optional, you can just have all data in the low variable |
clip |
if the ci are clipped |
exp |
If the value should be in exponential form (default) |
digits |
Number of digits - used in exp mode |
This function is far from perfect and I recommend specifying yourself the ticks that you want.
vector
Returns a vector with the ticks
test_data <- data.frame( coef = c(2, 0.5), low = c(1.5, 0.05), high = c(3, 0.75), boxsize = c(0.5, 0.5) ) # Exponential form where the exponent base i 2 for easier understanding getTicks( low = test_data$low, high = test_data$high, clip = c(-Inf, Inf), exp = TRUE ) # Non exponential form with using pretty getTicks( low = test_data$low, high = test_data$high, clip = c(-Inf, Inf), exp = FALSE ) # A very simple example getTicks(1:5 * 2.33, exp = FALSE ) # A slightly more advanced exponential version getTicks(1:10 * .33, digits = 2, exp = TRUE )
test_data <- data.frame( coef = c(2, 0.5), low = c(1.5, 0.05), high = c(3, 0.75), boxsize = c(0.5, 0.5) ) # Exponential form where the exponent base i 2 for easier understanding getTicks( low = test_data$low, high = test_data$high, clip = c(-Inf, Inf), exp = TRUE ) # Non exponential form with using pretty getTicks( low = test_data$low, high = test_data$high, clip = c(-Inf, Inf), exp = FALSE ) # A very simple example getTicks(1:5 * 2.33, exp = FALSE ) # A slightly more advanced exponential version getTicks(1:10 * .33, digits = 2, exp = TRUE )
The data is a list containing the Swedish and the Danish coefficients for health related quality of life (HRQoL) 1 year after total hip arthroplasty surgery. The age is modeled as a spline and is therefore presented as a contrast.
Max Gordon [email protected]
Construct default parameters from arguments that may include missing arguments
prDefaultGp(col, lwd, lty)
prDefaultGp(col, lwd, lty)
col |
Line color (or missing) |
lwd |
Line width (or missing) |
lty |
Line type (or missing) |
a gpar
object
containing these three attributes
Prepares the graph position so that it matches the label size
prepAlign(align, graph.pos, nc)
prepAlign(align, graph.pos, nc)
align |
Vector giving alignment (l,r,c) for the table columns |
graph.pos |
An integer indicating the position of the graph |
nc |
The number of columns |
Returns vector of "l", "c", "r"
values
Prepares the graph position so that it matches the label size
prepGraphPositions(graph.pos, nc)
prepGraphPositions(graph.pos, nc)
graph.pos |
The position of the graph element within the table of text. The
position can be |
nc |
The number of columns |
Returns number indicating the graph position
Convert margins to viewport npc margins
prepGridMargins(mar)
prepGridMargins(mar)
mar |
A vector of margins, at positions:
|
Returns a list with bottom
, left
, top
, and right
as unit("npc")
A function to extract graphical parameters from a fpShapesGp object
prGetShapeGp( shapes_gp, coords, object, default = grid::gpar(), nodefault = FALSE )
prGetShapeGp( shapes_gp, coords, object, default = grid::gpar(), nodefault = FALSE )
shapes_gp |
An object of class |
coords |
A numeric vector of length 2, specifying the label number (first item of the vector)
and the confidence band number within this label ; that can be >= 2 if there are multiple confidence
bands per label. Can be NULL for objects that are used only once (e.g. axes).
Vector |
object |
One of |
default |
Default attributes to rely on when neither found in |
nodefault |
Logical. If TRUE, do not search attribute in shapes_gp$default |
An object of class gpar
Andre GILLIBERT
A function to merge two sets of graphical parameters
prMergeGp(weak = gpar(), strong = gpar())
prMergeGp(weak = gpar(), strong = gpar())
weak |
A |
strong |
Another |
A gpar
merging attributes of both weak
and strong
Stops if the package doesn't exist
safeLoadPackage(package)
safeLoadPackage(package)
package |
string naming the package/name space to load. |